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ax + by = (a + b)z
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Abstract

For relatively prime positive integers a and b, let n = R(a, b) denote the least positive integer such
that every 2-colouring of [1, n] admits a monochromatic solution to ax+ by = (a+ b)z with x, y, z
distinct integers. It is known that R(a, b) ≤ 4(a + b) + 1. We show that R(a, b) = 4(a + b) + 1,
except when (a, b) = (3, 4) or (a, b) = (1, 4k) for some k ≥ 1, and R(a, b) = 4(a+ b)− 1 in these
exceptional cases.
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1 Introduction

Motivated by a desire to prove Fermat’s Last Theorem, in 1916 Schur [22] proved his celebrated
result that bears his name and states that for every positive integer r, there exists a least positive
integer s = s(r) such that for every r-colouring of the integers in the interval [1, s], there exists a
monochromatic solution to the equation x + y = z. The only exact values of s(r) that are known
are s(1) = 2, s(2) = 5, s(3) = 14, and s(4) = 45. Schur’s Theorem was generalized in a series of
results in the 1930’s by Rado [17, 18, 19] leading to a complete resolution to the following problem:
characterize systems of linear homogeneous equations with integral coefficients L such that for a
given positive integer r, there exists a least positive integer n = R(L; r) such that every r-colouring
of the integers in the interval [1, n] yields a monochromatic solution to the system L. Rado’s result is
particularly easily stated when L consists of a single equation. In this case, R(L; r) exists for every r
precisely when some nonempty subset of the coefficients of the single linear equation L sum to 0, and
we say that L is regular. Rado also proved that R(L; 2) exists for the single linear homogeneous
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equation if and only if there are at least three nonzero coefficients and both positive and negative
coefficients.

There has been a growing interest in the determination of the Rado numbers R(L; r), particularly
when L is a single equation and r = 2; for instance, see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20,
21]. In 1982 Beutelspacher & Brestovansky [1] proved that the 2-colour Rado number for the equa-
tion x1+ · · ·+xm−1−xm = 0 equals m2−m−1 for each m ≥ 3. Jones & Schaal [13] generalized this
by considering the equation a1x1 + · · ·+ am−1xm−1 − xm = 0 for positive integers a1, . . . , am−1 and
resolving the problem when min{a1, . . . , am−1} = 1. Hopkins & Schaal [12] resolved the problem in
the case min{a1, . . . , am−1} = 2 and gave bounds in the general case which they conjectured to hold,
and this was proved by Guo & Sun in [7]. They showed that the 2-colour Rado number for the general
case equals as2 + s− a, where a = min{a1, . . . , am−1} and s = a1 + · · ·+ am−1. Kosek & Schaal [15]
determined the 2-colour Rado number for the non-homogeneous equation x1 + · · ·+ xm−1 − xm = c
for several ranges of values of c.

Suppose L represents the linear equation a1x1 + . . . + amxm = 0. We may assume m ≥ 3. In
view of Rado’s result on single linear homogeneous regular equations, the only equations to consider
when m = 3 are when a1 + a2 = 0 or when a1 + a2 + a3 = 0. The first case was completely resolved
by Harborth & Maasberg [10, 11] for the 2-colour case, but the cases when r ≥ 3 remain open.
In the second case, Burr & Loo [4] provided the upper bound 4(a1 + a2) + 1 for the 2-colour case,
and Landman & Robertson [16] showed this to be the correct value when a1 = 1 and 4 ∤ a2. We
completely resolve the problem for the 2-colour case. We prove:

Theorem. Let a1, a2 be relatively prime positive integers. Then

R

(

a1x1 + a2x2 − (a1 + a2)x3; 2
)

=

{

4(a1 + a2)− 1 if a1 = 1, 4 | a2 or (a1, a2) = (3, 4);
4(a1 + a2) + 1 otherwise.

2 Preliminaries

Let N be the set of positive integers and let χ : [a, b] → [0, t−1] denote a t-colouring of numbers in the
interval {n ∈ N : a ≤ n ≤ b}. Given a t-colouring χ and a system of linear equations in m variables,
a solution (x1, x2, .., xm) to the system is said to be monochromatic if and only if χ(xi) = χ(xj) for
every i and j pair. We call a monochromatic solution non-trivial if all xi are distinct.

Definition 1. For t ≥ 1, a linear equation L is called t − regular if there exists n = R(L, t) such
that for every t− colouring of [1, n] there is a monochromatic solution to L. It is called regular if
it is t-regular for all t ≥ 1.

Theorem 1. (Rado’s Single Equation Theorem) Let L represent the linear equation
∑n

i=1 aixi = 0,
where ai ∈ N for 1 ≤ i ≤ n. Then L is regular if and only if some nonempty subset of the ai’s sums
to 0.

The smallest number R(L; t) such that any t-colouring of [1,R(L; t)] admits a monochromatic
solution to the equation L: a1x1+ . . .+amxm = 0 is called its rado number. Throughout this section,
we consider the regular equation a1x1 + a2x2 − (a1 + a2)x3 = 0. For notational convenience, we use
a, b for a1, a2, and n(a, b) for R

(

a1x1 + a2x2 − (a1 + a2)x3; 2
)

. We may assume that gcd(a, b) = 1
without loss of generality as otherwise the equation can be simplified. We further take a to be odd
in what follows, without loss of generality. If x, y, z are integers such that ax+ by = (a + b)z, then
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Figure 1: A snapshot of the infinite 2-dimensional grid with grid points (p,q) labeled with N(p,q) =
5p+3q for (a,b) = (5,3).

y ≡ z mod a and x ≡ z mod b since gcd(a, b) = 1. Thus y = z + ar, x = z + bs for some integers
r, s; substituting in ax+ by = (a+ b)z, we have r + s = 0. Since y = z + ar, x = z − br satisfies the
equation ax+ by = (a+ b)z for any r ∈ Z, the given equation has the parametric solution

(x, y, z) ∈
{

(z − br, z + ar, z) : r ∈ Z
}

. (1)

In an unpublished work, Burr & Loo [4] provided the upper bound 4(a + b) + 1 for n(a, b) for all
(a,b) by showing that any colouring on the numbers [1, 4(a + b) + 1] always yields a monochro-
matic solution. Landman & Robertson provide a different proof of this in [Theorem 9.12, [16]],
and also show this to be sharp when a = 1 and 4 ∤ b. To obtain the exact general bounds,
we thus consider numbers in the interval [1, 4(a + b)]. For any solution (x, y, z) ∈ [1, 4(a + b)],
max{x, y, z}−min{x, y, z} = |x−y| = (a+ b)r implies |r| ≤ 3 using (1). Note that r 6= 0 since x, y, z
are distinct.

Burr & Loo introduced a rather interesting way to depict the colouring over [1,4(a+b)+1] and
identify the solutions to the equation ax + by = (a + b)z by relating the parametric form (1) to
points in a 2-dimensional grid. We extend their representation to the infinite 2-dimensional grid
and label every point (p, q) in Z2 with the number N(p, q) = ap + bq. Note that multiple points
on the grid maybe mapped to the same number. For example, in Figure 1 points (0, 1) and (3,−4)
both map to the number 3. Whenever a colouring on [1, 4(a+ b)] induces a monochromatic solution
(x, y, z) to ax + by = (a + b)z, there exist monochromatic isosceles triangles right-angled at each
point in {(p, q) : N(p, q) = z} in Z2. A colouring λ : Z2 → {0, 1} maps naturally to a valid colouring
χ : Z → {0, 1} if λ((p1, q)) = λ((p2, q2)) whenever N(p1, q1) = N(p2, q2).

We use the notation AP (a, d; k) to denote the k-term arithmetic progression with first term a
and common difference d.

3 Main Results

We begin by showing that any 2-colouring of the integers in [1,M ], whereM = max{2a+4b, 4a+2b},
in which three consecutive terms of an arithmetic progression with common difference a, b or a+ b
are monochromatic, automatically gives a non-trivial monochromatic solution to ax+ by = (a+ b)z.
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Lemma 1. Let a, b be relatively prime positive integers, and let M = max{2a+4b, 4a+2b}. For any
N ≥ M and any χ : [1, N ] → {0, 1} such that χ(t) = χ(t+ d) = χ(t+ 2d) for some d ∈ {a, b, a+ b},
χ induces a non-trivial monochromatic solution to ax+ by = (a+ b)z.

Proof. Let χ : [1, N ] → {0, 1}, where N ≥ M = max{2a + 4b, 4a + 2b}. We consider the three
cases in order and make repeated use of (1).
Suppose χ(t) = χ(t+a) = χ(t+2a) = ǫ ∈ {0, 1}. Suppose first that t ≥ 2b+1. If either χ(t− b) = ǫ,
χ(t+a− b) = ǫ or χ(t− 2b) = ǫ, then we get corresponding monochromatic solutions {t− b, t, t+a},
{t + a − b, t + a, t + 2a} and {t − 2b, t, t + 2a}. Hence, χ(t − b) = χ(t + a − b) = χ(t − 2b) = 1 − ǫ
which again gives a non-trivial monochromatic solution. Similarly, in the case t ≤ 2b, if either
χ(t+ a+ b) = ǫ, χ(t+ 2a+ b) = ǫ or χ(t+ 2a+ 2b) = ǫ, then we get corresponding monochromatic
solutions {t, t + a, t + a + b}, {t + a, t + 2a, t + 2a + b} and {t, t + 2a, t + 2a + 2b}. Thus, forcing
χ(t+ a+ b) = χ(t+2a+ b) = χ(t+2a+2b) = 1− ǫ, which again gives a non-trivial monochromatic
solution.
The same argument interchanging the roles of a and b prove the assertion for arithmetic progressions
with common difference b.
Next, consider the case when χ(t) = χ(t + a + b) = χ(t + 2a + 2b) = ǫ for ǫ ∈ {0, 1}. If any one
of χ(t + a), χ(t + 2a), χ(t + 2a + b) equals ǫ, we have a monochromatic solution, since the triples
{t, t + a, t + a+ b}, {t, t + 2a, t + 2a + 2b}, and {t + a + b, t + 2a + b, t+ 2a + 2b} are all solutions.
Hence χ(t+ a) = χ(t+ 2a) = χ(t+ 2a+ b) = 1− ǫ, and we have a monochromatic solution. �

Lemma 2. For positive integers a, b,N , with gcd(a, b) = 1 and min{a, b} > N , let T = {ax+by+1 :
0 ≤ x, y ≤ N}. Then f : T → T given by

f(ax+ by + 1) = bx+ ay + 1

is a bijection on T . Suppose χ : T → {0, 1}, and let (x0, y0, z0) be a monochromatic solution to
ax + by = (a + b)z under χ with distinct x, y, z. Then

(

f(x0), f(y0), f(z0)
)

is a monochromatic
solution to ax+ by = (a+ b)z with distinct x, y, z under χ ◦ f : T → {0, 1} given by

(χ ◦ f) (n) = χ
(

f(n)
)

.

Proof. Suppose ax+ by+1 = ax′ + by′+1, where x, x′, y, y′ ∈ [0, N ]. Then a(x−x′) = −b(y− y′),
and since gcd(a, b) = 1, we have x−x′ = bt, y−y′ = −at for some t ∈ Z. Since max{|x−x′|, |y−y′|} ≤
N < min{a, b}, this implies x = x′ and y = y′. Thus there is a one-to-one correspondence between
the set of lattice points in [0, N ]×[0, N ] and the set of integers in T , given by (x, y) 7→ ax+by+1, and
so f is well-defined. If bx+ay+1 = bx′+ay′+1, the same argument gives x = x′ and y = y′. Thus f
is injective, and hence bijective since f : T → T . In fact, via the correspondence T ↔ [0, N ]× [0, N ],
f maps (x, y) to (y, x), and is analogous to reflecting the lattice along the x = y line.

Let (x0, y0, z0) be a monochromatic solution to ax+by = (a+b)z under χ, with x0, y0, z0 distinct
integers in T . If z0 ↔ (r, s), then by (1), x0 ↔ (r, s − t) and y0 ↔ (r + t, s) for t ∈ {±1,±2,±3}.
Thus f(x0) ↔ (s − t, r), f(y0) ↔ (s, r + t), and f(z0) ↔ (s, r). By (1),

(

f(y0), f(x0), f(z0)
)

is again
a solution to ax+ by = (a+ b)z with distinct x, y, z. �

Theorem 2. (Burr & Loo)

Every 2-colouring of [1, 4(a + b) + 1] admits a monochromatic solution to ax + by = (a + b)z with
x, y, z distinct integers.
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We next prove the exact rado numbers for the equation ax+by = (a+b)z. The proof is divided into
two broad cases, when 4 ∤ ab and the other 4 | ab. In each case, we either give a colouring that avoids
a monochromatic solution on [1, 4a+4b], which using Theorem 2 implies that n(a, b) = 4(a+ b) + 1,
or we give a colouring that avoids a monochromatic solution on [1, 4(a+ b)− 2] and show that every
colouring on [1, 4(a + b)− 1] induces a monochromatic solution.

4 The Case 4 ∤ ab

We first consider the case when 4 ∤ ab. Since we take a to be odd, this means that b is either an odd
integer or twice an odd integer.

Theorem 3. Let a, b be relatively prime positive integers such that 4 ∤ ab. Then there exists a 2-
colouring of [1, 4(a + b)] which admits no monochromatic solution to ax+ by = (a+ b)z with x, y, z
distinct integers. In particular, n(a, b) = 4(a+ b) + 1.

Proof. Since a is odd, we consider the two cases: (i) b is odd; (ii) b ≡ 2 mod 4.

Case I: (b is odd) Define a colouring χ : [1, 4(a + b)] → {0, 1} as follows:

χ(n) =

{

0 if n ∈ [1, 2(a + b)], n is even, or n ∈ [2(a + b) + 1, 4(a + b)], n is odd;
1 if n ∈ [1, 2(a + b)], n is odd, or n ∈ [2(a+ b) + 1, 4(a + b)], n is even.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.
Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+by = (a+b)z. Since a, b
are both odd, x, y have the same parity, and so both belong to [1, 2(a+b)] or to [2(a+b)+1, 4(a+b)].
But then z must lie in the same interval as x, y (since it lies between x and y), and so must have
the same parity (since it has the same colour), implying r is even. But then r = ±2, and this is a
contradiction since |x− y| = 2(a+ b) is greater than either interval length.

An alternate proof for this theorem can be given using the grid framework. We refer to this colouring
as the “diagonal” colouring. Consider the infinite grid restricted to numbers from 1 to 4(a+ b). The
diagonal colouring colours each minor diagonal (with at most 4 grid points), alternately with 0011
and 1100, i.e if χ(x, x+a+ b, x+2(a+ b), x+3(a+ b)) = (0, 0, 1, 1) then χ(x+ b, x+a+2b, x+2a+
3b, x+3a+4b) = (1, 1, 0, 0) and so on. Proving that such a colouring works entails showing that (1)
there cannot exist monochromatic triangles that correspond to a solution, and (2) every point (p, q)
that maps to the same number is coloured with the same colour. The grid shown in Figure 1 depicts
a grid for (a, b) = (5, 3) that is coloured using the diagonal colouring.

Case II:
(

b ≡ 2 mod 4
)

Define a colouring χ : [1, 4(a + b)] → {0, 1} as follows:

χ(n) =

{

0 if n ≡ 1 or 2 mod 4;
1 if n ≡ 0 or 3 mod 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.
Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a + b)z. Since
x, z have the same parity and the same colour, 4 | (x − z) = br. Thus r is even, hence r = ±2, and
y, z also have the same parity. But then 4 | (y − z), and this is false since |y − z| = 2a. �
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5 The Case 4 | ab

5.1 The subcase a = 3, b = 4

Theorem 4. Every 2-colouring of [1, 27] admits a monochromatic solution to 3x + 4y = 7z with
x, y, z distinct integers.

Proof. Suppose that χ : [1, 27] → {0, 1} is a colouring which admits no monochromatic so-
lution to 3x + 4y = 7z with x, y, z distinct integers. Consider the colouring on the elements of
S = AP (6, 7; 4) = {6, 13, 20, 27}. By Lemma 1, the only cases to consider for the ordered 4-tuple
(

χ(6), χ(13), χ(20), χ(27)
)

are (i) (0, 0, 1, 0), (ii) (0, 0, 1, 1), (iii) (0, 1, 0, 0), (iv) (0, 1, 0, 1) and (v)
(0, 1, 1, 0). We repeatedly use (1) and Lemma 1 to prove the five cases.

• Case (i): Note that χ(6) = χ(27) = 0 forces χ(15) = χ(18) = 1, and that χ(13) = χ(27) = 0
forces χ(21) = 1. Now {15, 18, 21} forces a monochromatic solution by Lemma 1. Each part in
this proof can be easily checked using the grid representation. We depict only the first part.
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• Case (ii): Note that χ(6) = χ(13) = 0 forces χ(9) = χ(10) = 1, and that χ(20) = χ(27) = 1
forces χ(23) = χ(24) = 0.

We claim that χ(17) = 0. Otherwise, χ(10) = χ(17) = 1 forces χ(3) = 0, which together
with χ(24) = 0 forces χ(15) = 1. Now χ(9) = χ(15) = 1 forces χ(12) = 0, leading to the
monochromatic solution {3, 12, 24}. Thus χ(17) = 0. Together with χ(13) = 0, this forces
χ(21) = 1.

If χ(15) = 0, then χ(24) = 0 forces χ(3) = 1, which together with χ(10) = 1 forces χ(7) = 0.
Now χ(7) = χ(15) = 0 forces χ(1) = 1, which together with χ(10) = 1 forces χ(22) = 0. Next
χ(15) = χ(22) = 0 forces χ(8) = χ(18) = 1, and χ(18) = χ(21) = 1 forces χ(25) = 0. Finally
χ(13) = χ(25) = 0 forces χ(4) = 1, leading to the monochromatic solution {1, 4, 8}.

If χ(15) = 1, then χ(21) = 1 forces χ(18) = 0 and χ(9) = 1 forces χ(1) = χ(12) = 0. Now
χ(12) = χ(18) = 0 forces χ(4) = χ(26) = 1. Next χ(1) = χ(13) = 0 forces χ(22) = 1, which
together with χ(26) = 1 forces χ(19) = 0. Next χ(12) = χ(19) = 0 forces χ(5) = 1, which
together with χ(26) = 1 forces χ(14) = 0 and together with χ(9) = 1 forces χ(2) = 0. This
gives the monochromatic solution {2, 14, 23}.

• Case (iii): Note that χ(6) = χ(27) = 0 forces χ(15) = χ(18) = 1, and that χ(6) = χ(20) = 0
forces χ(12) = 1. Now {12, 15, 18} forces a monochromatic solution by Lemma 1.

• Case (iv): Note that χ(6) = χ(20) = 0 forces χ(12) = χ(14) = 1, and that χ(13) = χ(27) = 1
forces χ(19) = χ(21) = 0.
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If χ(11) = 0, then χ(19) = 0 forces χ(15) = χ(25) = 1. Now χ(12) = χ(15) = 1 forces
χ(18) = 0, which together with χ(11) = 0 forces χ(4) = 1. This leads to the monochromatic
solution {4, 13, 25}.

If χ(11) = 1, then χ(14) = 1 forces χ(7) = χ(17) = 0. Now χ(7) = χ(21) = 0 forces χ(15) = 1,
which together with χ(12) = 1 forces χ(9) = 0. Also χ(17) = χ(21) = 0 forces χ(24) = 1, which
together with χ(12) = 1 forces χ(3) = 0. This leads to the monochromatic solution {3, 9, 17}.

• Case (v): Note that χ(6) = χ(27) = 0 forces χ(15) = χ(18) = 1, and that χ(13) = χ(20) = 1
forces χ(16) = χ(17) = 0. Now χ(15) = χ(18) = 1 forces χ(21) = 0, which together with
χ(17) = 0 gives χ(14) = χ(24) = 1. Next χ(14) = χ(18) = 1 forces χ(10) = 0, which together
with χ(17) = 0 forces χ(3) = 1. This leads to the monochromatic solution {3, 15, 24}.

�

Theorem 5. There exists a 2-colouring of [1, 26] which admits no monochromatic solution to 3x+
4y = 7z with x, y, z distinct integers. In particular, n(3, 4) = 27.

Proof. We give the colouring on the grid for (a, b) = (3, 4). As a quick check, the reader can observe
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that this colouring does not admit any monochromatic solution triangles. More generally, we provide
a 2-colouring of [1, 4(a+ b)− 2] which admits no monochromatic solution to ax+ by = (a+ b)z with
x, y, z distinct integers for the case a = b−1, 4 | b. Note that 4(a+b)−2 = 8b−6, and set N = 8b−5.
Define a colouring χ : [1, 8b − 6] → {0, 1} by first defining it on the interval [1, 4b − 3] by

χ(n) =

{

0 if ⌈ n
b−1⌉ is even;

1 if ⌈ n
b−1⌉ is odd,

and then extending it to the interval [1, 8b− 6] by χ(n) = χ(N −n) for 4b− 3 � n ≤ 8b− 6. Observe
that the mapping x 7→ (4b− 3)− x sends the interval It = [(t− 1)(b− 1) + 1, t(b− 1)] to the interval
Jt = [(4 − t)(b − 1) + 1, (5 − t)(b − 1)] for 1 ≤ t ≤ 4, so that ⌈ i

b−1⌉ + ⌈4b−3−i
b−1 ⌉ = 5 for each i ∈ It,

1 ≤ t ≤ 4. We show that χ admits no monochromatic solution to (b − 1)x + by = (2b − 1)z with
x, y, z distinct integers.
Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying (b− 1)x+ by = (2b− 1)z.
Since y, z have the same colouring, from (1), |y − z| = (b − 1)|r| and so r = ±2. Thus |x − y| =
2(2b − 1) = N − (4b − 3); without loss of generality, suppose x < y. Now χ(x) = χ(y) =
χ(N − y) = χ(4b − 3 − x), so that if x ∈ I, then 4b − 3 − x ∈ J . This leads to a contradiction
since ⌈ x

b−1⌉+ ⌈4b−3−x
b−1 ⌉ = 5 is odd. �
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5.2 The subcase a = 1

Theorem 6. Suppose a = 1 and 4 | b. Then every 2-colouring of [1, 4b+3] admits a monochromatic
solution to x+ by = (b+ 1)z with x, y, z distinct integers.

Proof. Suppose that χ : [1, 4b + 3] → {0, 1} is a colouring which admits no monochromatic
solution to x + by = (b + 1)z with x, y, z distinct integers. Consider the colouring on the elements
of S = AP (1, b + 1; 4). By Lemma 1, the only cases to consider for the ordered 4-tuple

(

χ(1), χ(b +
2), χ(2b + 3), χ(3b + 4)

)

are (i) (0, 0, 1, 0), (ii) (0, 0, 1, 1), (iii) (0, 1, 0, 0), (iv) (0, 1, 0, 1) and (v)
(0, 1, 1, 0). We repeatedly use Lemma 1 to prove the five cases.

• Case (i). Note that χ(1) = χ(b + 2) = 0 forces χ(b + 1) = 1, that χ(b + 2) = χ(3b + 4) = 0
forces χ(3b + 2) = 1, and that χ(1) = χ(3b + 4) = 0 forces χ(3b + 1) = 1. Now χ(3b + 1) =
χ(3b+ 2) = 1 forces χ(4b+ 2) = 0, which together with χ(b+ 2) = 0 forces χ(b− 1) = 1. But
now {b− 1, b+1, 3b+1} gives a monochromatic solution. We again show this part on the grid,
the remaining parts can be checked similarly.

bc bc bc

bc

bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc bc

bcb

bc
b-1

bc
1

bc
b+1

bc
2b+3

bc
3b+1

bc
b+2

bc
3b+2

bc
4b+2

bc
3b+4

• Case (ii). Note that χ(1) = χ(b+2) = 0 forces χ(2) = χ(b+1) = 1 and χ(2b+3) = χ(3b+4) = 1
forces χ(2b+ 4) = χ(3b+ 3) = 0.

Assume first that χ(b+ 3) = 0. We claim that

(

χ(i), χ(b + i), χ(2b + i), χ(3b + i)
)

= (ǫ, 1− ǫ, ǫ, 1− ǫ) (2)
(

χ(i+ 1), χ(b + i+ 1), χ(2b + i+ 1), χ(3b + i+ 1)
)

= (ǫ, 1− ǫ, ǫ, 1− ǫ)

for some i ∈ [2, b] implies

(

χ(i+ 2), χ(b+ i+ 2), χ(2b + i+ 2), χ(3b + i+ 2)
)

= (1− ǫ, ǫ, 1− ǫ, ǫ)
(

χ(i+ 3), χ(b+ i+ 3), χ(2b + i+ 3), χ(3b + i+ 3)
)

= (1− ǫ, ǫ, 1− ǫ, ǫ).

Note that χ(b+3) = 0 together with χ(b+2) = 0 forces χ(b+4) = 1, and with χ(2b+4) = 0 forces
χ(3b+5) = 1, which together with χ(2) = 1 forces χ(3b+2) = 0. Next χ(b+2) = χ(3b+2) = 0
forces χ(2b+ 2) = 1, and χ(3b+ 4) = χ(3b+ 5) = 1 forces χ(3b+ 6) = 0, which together with
χ(3b+ 3) = 0 forces χ(3) = 1. This proves (2) for i = 2.

Assume (2) holds for some i ∈ [2, b]. Then χ(i) = χ(i + 1) = ǫ forces χ(i + 2) = 1 − ǫ, and
χ(b+ i) = χ(b+ i+1) = 1− ǫ forces χ(b+ i+2) = ǫ. Next χ(2b+ i) = χ(2b+ i+1) = ǫ forces
χ(2b + i + 2) = 1 − ǫ, and χ(3b + i) = χ(3b + i + 1) = 1 − ǫ forces χ(3b + i + 2) = ǫ. Again
χ(b+ i+1) = χ(3b+ i+1) = 1− ǫ forces χ(3b+ i+3) = ǫ, which together with χ(i) = ǫ forces
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χ(i+ 3) = 1− ǫ. Now χ(i+ 2) = χ(i+ 3) = 1− ǫ forces χ(b+ i+ 3) = ǫ, which together with
χ(3b+ i+ 3) = ǫ forces χ(2b+ i+ 3) = 1− ǫ.

Now assume that χ(b+ 3) = 1. We claim that

(

χ(i), χ(b+ i+ 1), χ(2b + i+ 2), χ(3b + i+ 3)
)

= (ǫ, ǫ, 1 − ǫ, 1− ǫ), (3)
(

χ(i+ 1), χ(b + i+ 2), χ(2b + i+ 3), χ(3b + i+ 4)
)

= (1− ǫ, 1− ǫ, ǫ, ǫ)

for some i ∈ [2, b− 2] implies

(

χ(i+ 2), χ(b+ i+ 3), χ(2b + i+ 4), χ(3b + i+ 5)
)

= (ǫ, ǫ, 1 − ǫ, 1− ǫ).

Note that χ(b + 3) = 1 together with χ(2b + 3) = 1 forces χ(3) = 0, which together with
χ(3b+ 3) = 0 forces χ(3b+ 6) = 1. Next χ(3b+ 4) = χ(3b+ 6) = 1 forces χ(3b+ 5) = 0. This
proves (3) for i = 2.

Assume (3) holds for some i ∈ [1, b−1]. Then χ(i) = χ(b+ i+1) = ǫ forces χ(i+1) = 1−ǫ, and
χ(2b+ i+2) = χ(3b+ i+3) = 1− ǫ forces χ(3b+ i+2) = ǫ. Next χ(i+1) = χ(b+ i+2) = 1− ǫ
forces χ(i + 2) = ǫ, and χ(2b + i + 3) = χ(3b + i + 4) = ǫ forces χ(2b + i+ 4) = 1 − ǫ. Again
χ(i+2) = χ(3b+ i+2) = ǫ forces χ(3b+ i+5) = 1− ǫ, which together with χ(2b+ i+4) = 1− ǫ
forces χ(b+ i+ 3) = ǫ.

Finally, we show that both (2) and (3) lead to a contradiction when 4 | b. Since (2) implies
χ(i + 4) = χ(i) for i ≥ b, we must have χ(2b) = χ(b) if 4 | b, contradicting (2). Also since (3)
holds for i = 2, we get χ(b, 2b + 1, 3b + 2, 4b + 3) = (1, 1, 0, 0). If χ(b + 1) = 0, then we get
the monochromatic solution {1, b + 1, b + 2}; if χ(b+ 1) = 1, then we get the monochromatic
solution {b, b+ 1, 2b + 1}.

• Case (iii). Note that χ(1) = χ(2b+3) = 0 forces χ(3) = 1, and that χ(1) = χ(3b+4) = 0 forces
χ(4) = χ(3b + 1) = 1. Now χ(3) = χ(4) = 1 forces χ(2) = 0. Next χ(2b + 3) = χ(3b+ 4) = 0
forces χ(2b + 4) = χ(3b + 3) = 1, which together with χ(3b + 1) = 1 forces χ(3b + 2) = 0.
But χ(2) = χ(3b + 2) = 0 forces χ(3b + 5) = 1, which together with χ(2b + 4) = 1 forces
χ(2b+5) = 0. Now χ(3) = χ(3b+3) = 1 forces χ(3b+6) = 0, which together with χ(2b+5) = 0
forces χ(2b+ 6) = 1. This gives the monochromatic solution {4, 2b+ 4, 2b + 6}.

• Case (iv). Note that χ(1) = χ(2b + 3) = 0 forces χ(3) = χ(2b + 1) = 1 and χ(b + 2) =
χ(3b+ 4) = 1 forces χ(b+ 4) = χ(3b+ 2) = 0.

We claim that

(

χ(i), χ(b + i), χ(2b + i), χ(3b + i)
)

= (ǫ, 1− ǫ, 1− ǫ, ǫ) (4)
(

χ(i+ 1), χ(b + i+ 1), χ(2b + i+ 1), χ(3b + i+ 1)
)

= (1− ǫ, 1− ǫ, ǫ, ǫ)

for some i ∈ [2, b] implies

(

χ(i+ 2), χ(b+ i+ 2), χ(2b + i+ 2), χ(3b + i+ 2)
)

= (1− ǫ, ǫ, ǫ, 1− ǫ)
(

χ(i+ 3), χ(b+ i+ 3), χ(2b + i+ 3), χ(3b + i+ 3)
)

= (ǫ, ǫ, 1 − ǫ, 1− ǫ).

Assume first that χ(2) = 0. Now χ(2) = χ(3b+2) = 0 forces χ(3b+5) = 1, which together with
χ(3b+4) = 1 forces χ(3b+3) = 0. Next χ(2b+3) = χ(3b+3) = 0 forces χ(b+3) = χ(2b+2) = 1.
This proves (4) for i = 2.

Now assume that χ(2) = 1. Note that χ(2) = χ(b + 2) = 1 forces χ(2b + 2) = 0, and χ(2) =
χ(3) = 1 forces χ(b+ 3) = 0. Next χ(2b+2) = χ(2b+ 3) = 0 forces χ(2b+ 4) = χ(3b+3) = 1.
Finally χ(2) = χ(2b+ 4) = 1 forces χ(4) = 0. This proves (4) for i = 3.
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Assume (4) holds for some i ∈ [2, b]. Then χ(i) = χ(3b+ i) = ǫ forces χ(3b+ i+3) = 1− ǫ, and
χ(i+1) = χ(b+i+1) = 1−ǫ forces χ(b+i+2) = ǫ. Next χ(2b+i+1) = χ(3b+i+1) = ǫ forces
χ(3b+ i+2) = 1− ǫ, which together with χ(3b+ i+3) = 1− ǫ forces χ(2b+ i+2) = ǫ. Again
χ(b+i+2) = χ(2b+i+2) = ǫ forces χ(i+2) = χ(2b+i+3) = 1−ǫ. Now χ(i+1) = χ(i+2) = 1−ǫ
forces χ(i+ 3) = ǫ, and χ(2b+ i+ 3) = χ(3b+ i+ 3) = 1− ǫ forces χ(b+ i+ 3) = ǫ.

Since (4) implies χ(i + 4) = χ(i) and χ(i + 2b) = 1 − χ(i), we have a contradiction when
4 | b except when b = 4 in the case when χ(2) = 1. But in this case, χ(3) = χ(6) = 1 forces
χ(18) = 0 which gives a solution using Lemma 1, as χ(10) = χ(14) = 0.

• Case (v). Note that χ(1) = χ(3b+4) = 0 forces χ(4) = χ(3b+1) = 1 and χ(b+2) = χ(2b+3) = 1
forces χ(2b+ 2) = χ(b+ 3) = 0.

Assume first that χ(3) = 0. We claim that

(

χ(i), χ(b + i), χ(2b + i), χ(3b + i)
)

= (ǫ, ǫ, 1− ǫ, 1− ǫ) (5)
(

χ(i+ 1), χ(b + i+ 1), χ(2b + i+ 1), χ(3b + i+ 1)
)

= (1− ǫ, 1− ǫ, ǫ, ǫ)

for some i ∈ [2, b+ 1] implies

(

χ(i+ 2), χ(b+ i+ 2), χ(2b + i+ 2), χ(3b + i+ 2)
)

= (ǫ, ǫ, 1 − ǫ, 1− ǫ).

Note that χ(3) = χ(b+3) = 0 forces χ(2) = 1, which together with χ(4) = 1 forces χ(2b+4) = 0.
Next χ(b + 3) = χ(2b + 4) = 0 forces χ(3b + 5) = 1, which together with χ(2) = 1 forces
χ(3b+ 2) = 0. Next χ(3b+ 2) = χ(3b+ 4) = 0 forces χ(3b+ 3) = 1. This proves (5) for i = 2.

Assume (5) holds for some i ∈ [2, b + 1]. Then χ(b + i) = χ(2b + i + 1) = ǫ forces χ(i − 1) =
χ(3b + i + 2) = 1 − ǫ, which in turn force χ(i + 2) = ǫ. Next χ(i + 1) = χ(b + i + 1) = 1 − ǫ
forces χ(b+ i+ 2) = ǫ, and χ(i+ 2) = χ(b+ i+ 2) = ǫ forces χ(2b+ i+ 2) = 1− ǫ.

Now assume that χ(3) = 1. We claim that

(

χ(i), χ(b + i), χ(2b + i), χ(3b + i)
)

= (ǫ, 1 − ǫ, ǫ, 1− ǫ), (6)
(

χ(i+ 1), χ(b + i+ 1), χ(2b + i+ 1), χ(3b + i+ 1)
)

= (ǫ, 1− ǫ, ǫ, 1− ǫ)

for some i ∈ [3, b] implies

(

χ(i+ 2), χ(b+ i+ 2), χ(2b + i+ 2), χ(3b + i+ 2)
)

= (1− ǫ, ǫ, 1− ǫ, ǫ)
(

χ(i+ 3), χ(b+ i+ 3), χ(2b + i+ 3), χ(3b + i+ 3)
)

= (1− ǫ, ǫ, 1− ǫ, ǫ).

Note that χ(3) = χ(4) = 1 forces χ(2) = χ(5) = χ(b + 4) = 0. Now χ(b + 3) = χ(b + 4) = 0
forces χ(2b + 4) = 1, and χ(3) = χ(2b + 3) = 1 forces χ(2b + 5) = 0, which together with
χ(b + 4) = 0 forces χ(3b + 6) = 1. Finally χ(3) = χ(3b + 6) = 1 forces χ(3b + 3) = 0. This
proves (6) for i = 3.

Assume (6) holds for some i ∈ [3, b]. Using the argument in the first case of case (ii), we
conclude that the claim given above holds.

Finally, we show that both (5) and (6) lead to a contradiction when 4 | b. Note that both (5) and
(6) imply χ(i+ 4) = χ(i) for i ≥ 3. This contradicts (5) since it also implies χ(2b+ 2) = χ(2),
and contradicts (6) since this also implies χ(b+ 3) = χ(3).

�
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Theorem 7. Suppose a = 1 and 4 | b. There exists a 2-colouring of [1, 4b + 2] which admits no
monochromatic solution to x + by = (b + 1)z with x, y, z distinct integers. In particular, n(a, b) =
4b+ 3.

Proof. We use the parametric solution given in (1). Let I = [b+ 1, 2b] ∪ [2b+ 3, 3b + 2]. Define a
colouring χ : [1, 4(b + 1)− 2] → {0, 1} as follows:

χ(n) =

{

0 if n ∈ I, n is even, or n /∈ I, n is odd;
1 if n ∈ I, n is odd, or n /∈ I, n is even.

We show that χ admits no monochromatic solution to x+ by = (b+1)z with x, y, z distinct integers.
Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying x+ by = (b + 1)z. If r is
odd, then x, y have opposite parity, and so exactly one belongs to I. This implies r = ±1, since the
maximum difference between elements in I and those not in I is 3b+ 1 whereas |x− y| = (b+ 1)|r|.
If r = ±1, then y, z are consecutive integers having the same colour, and so exactly one belongs
to I. Thus z is one of b, b + 1, 2b, 2b + 1, 2b + 2, 2b + 3, 3b + 2, 3b + 3. Now since |x − z| = b and
both belong to I or both do not, the only possibility is (x, z) = (3b, 2b). But then y = 2b − 1,
and this is impossible since x, y, z ∈ I in that case. If r is even, then r = ±2 and x, y, z have the
same parity. Thus all or none of x, y, z belong to I, since they have the same colour. This is not
possible if x, y ∈ I since (3b + 2) − (b + 1) < |x − y| = 2b + 2. If x, y /∈ I, then min{x, y} ∈ [1, b]
since |x−y| = 2b+2. But then max{x, y} ∈ [2b+3, 3b+2] ⊂ I, which is a contradiction to x, y /∈ I. �

5.3 The subcase a 6= 1, (a, b) 6= (3, 4)

Definition 2. We define a sequence {si}i≥0 by

si+1 =

{

si − b if si > b;
si + a if si ≤ b,

with s0 := 1.

Lemma 3. For positive and coprime integers a, b, let {si}i≥0 be as in Definition 1, and let Si :=
AP (si, a+ b; 4) for i ≥ 0. Then the following hold:

(i) s0, . . . , sa+b−1 are distinct integers in [1, a+ b].

(ii) si+a+b = si for i ≥ 0.

(iii) {S0, . . . , Sa+b−1} partitions [1, 4(a + b)].

Proof.

(i) Write si = s0 + i1a − i2b, sj = s0 + j1a − j2b, and note that i = i1 + i2, j = j1 + j2 and
si, sj ∈ [1, a + b]. Now si = sj if and only if (i1 − j1)a = (i2 − j2)b. Since gcd(a, b) = 1, this is
only possible when a | (i2 − j2) and b | (i1 − j1); set i1 − j1 = bt and i2 − j2 = at, t ∈ Z. Thus
i− j = (i1+ i2)− (j1+ j2) = (a+ b)t, which is only possible when t = 0 since i, j ∈ [0, a+ b−1].
Thus s0, . . . , sa+b−1 are distinct integers in [1, a+ b], and so {s0, . . . , sa+b−1} = {1, . . . , a+ b}.

(ii) To show that si+a+b = si for i ≥ 0, it is enough to show that sa+b = s0. Write sa+b = s0+ia−jb,
where i+ j = a+ b. By part (i), sa+b = sk for some k ∈ [0, a+ b− 1]. With sk = s0 + i′a− j′b,
i′ + j′ = k, the argument in part (i) gives a + b − k = (i + j) − (i′ + j′) = (a + b)t. Since
0 ≤ k ≤ a+ b− 1, we must have k = 0.
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(iii) Observe that each Si is a 4-subset of [1, 4(a+b)], because the largest integer among S0, . . . , Sa+b−1

is (a + b) + 3(a + b) = 4(a + b). If, for i 6= j, m ∈ Si ∩ Sj then m is congruent to both si
and sj mod (a + b). This is not possible, by part (i). Hence Si ∩ Sj = ∅ for i 6= j, and so
∣

∣

∣

⋃a+b−1
i=0 Si

∣

∣

∣
=

∑a+b−1
i=0 |Si| = 4(a + b). Thus {S0, . . . , Sa+b−1} partitions [1, 4(a + b)].

�

Remark 1. We set si+a+b = si and Si+a+b = Si for each i ∈ Z.

Lemma 4. Let a, b be positive integers, with gcd(a, b) = 1. Let I be any interval of b consecutive
integers. Then every integer in [1, 4(a+b)] is uniquely expressible as 1+ai+bj with i ∈ I and j ∈ Z.

Proof. For any m ∈ [1, 4(a+ b)], choose i, j ∈ Z such that m− 1 = ai+ bj. By repeatedly applying
the transformation (i, j) 7→ (i ± b, j ∓ a), we can uniquely choose t ∈ Z so that i + bt ∈ I. Thus
every integer in [1, 4(a + b)] is of the form 1 + ai + bj with i ∈ I and j ∈ Z. To prove uniqueness
of representation, suppose 1 + ai + bj = 1 + ak + bℓ with i, k ∈ I. This implies b | (i − k), since
gcd(a, b) = 1, and since |i− k| < b, we must have i = k and j = ℓ. �

Remark 2. The result of Lemma 4 also holds for any interval J of a consecutive integers, with i ∈ Z
and j ∈ J .

Let ax0 + by0 = (a + b)z0, with x0, y0, z0 ∈ [1, 4(a + b)]. By (1) and Lemma 3, x0, y0 ∈ Si for some
i ∈ {0, . . . , a+ b− 1}. We subdivide the construction of a valid 2-colouring of [1, 4(a+ b)] into three
subcases: (i) b

a
> 2 or a

b
> 2; (ii) 4

3 < b
a
< 2 or 4

3 < a
b
< 2; (iii) 1 < b

a
< 4

3 or 1 < a
b
< 4

3 . For
0 ≤ i ≤ a + b − 1, we use the notation χ(Si) = χ

(

AP (si, a + b; 4)
)

to denote the ordered tuple
(χ(si), χ(si + a+ b), χ(si + 2a+ 2b), χ(si + 3a+ 3b)).

Lemma 5. Let a, b be positive, coprime integers, and let ax+ by = (a+ b)z, with distinct x, y, z in

[1, 4(a + b)]. Let i be such that
∣

∣Si ∩ {x, y}
∣

∣ = 2. Then z ∈ Si−r ∪ Si+r, where r = |x−y|
a+b

≤ 3.

Proof. Since x, y ∈ Si, we can write x = si + t1(a+ b), y = si + t2(a+ b), where t1, t2 are distinct
integers in [0, 3]. Let |t1 − t2| = r. By (1), z = si + t1a + t2b or si + t2a + t1b. So z ≡ si ± br
mod a + b. Now si+r = si + ak − b(r − k) and si−r = si − aℓ + b(r − ℓ) for some k, ℓ ∈ [0, r]. So
si±r ≡ si∓br mod a+b, so that z ≡ si+r mod a+b or z ≡ si−r mod a+b. Hence z ∈ Si−r∪Si+r. �

Lemma 6. Let a, b be relatively prime positive integers. For q ≥ p, consider a 2-colouring χ on
[1, 4(a + b)], such that for n ∈

⋃q
i=p Si,

χ(Si) =

{

0011 if i is odd;
1100 if i is even.

Then χ admits no monochromatic solution in
⋃q

i=p Si. Moreover, there is no monochromatic solution

x0, y0, z0 such that
∣

∣Si ∩ {x0, y0}
∣

∣ = 2 and i ∈ [p+ 1, q − 1].

Proof. Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z
and x, y, z ∈

⋃q
i=p Si. Define i such that x, y ∈ Si, by (1). Thus {x, y} = {si, si + a + b} or

{si+2a+2b, si+3a+3b}. By (1), z ∈ {si+a, si+b} in the first case, and z ∈ {si+2a+3b, si+3a+2b}
in the second case. Observe that si + a is the first term in Si+1 if si ≤ b and the second term in
Si+1 if si > b; in both cases, χ(si + a) 6= χ(si). Again observe that si + b is the first term in Si−1 if
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si ≤ a and the second term in Si−1 if si > a; in both cases, χ(si + b) 6= χ(si). A similar argument
applies to the cases z = si + 2a+ 3b and z = si + 3a+ 2b. Thus χ(z) 6= χ(x) in all cases, which is a
contradiction.

The colouring defined by χ forces r = 1, by (1). Let i be such that
∣

∣Si∩{x0, y0}
∣

∣ = 2. By Lemma
5, i /∈ [p + 1, q − 1]. �

Remark 3. Note that χ in Lemma 6 reduces to the 2-colouring in the first case of Theorem 2.

Lemma 7. Let a, b be relatively prime positive integers, and let I be any interval consisting of
b consecutive integers. For q ≥ p, consider a 2-colouring χ on [1, 4(a + b)], such that for n =
1 + ai+ bj ∈

⋃q
k=p Sk,

χ(1 + ai+ bj) =

{

0 if i is odd, j ≡ 0, 3 mod 4 or i is even, j ≡ 1, 2 mod 4;
1 if i is odd, j ≡ 1, 2 mod 4 or i is even, j ≡ 0, 3 mod 4.

Then χ admits no monochromatic solution in
⋃q

i=p Si. Moreover, there is no monochromatic solution

x0, y0, z0 such that
∣

∣Si ∩ {x0, y0}
∣

∣ = 2 and i ∈ [p+ 3, q − 3].

Proof. Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z
and x, y, z ∈

⋃q
i=p Si. By (1) and Lemma 4, we can write z = 1 + ai + bj, x = 1 + ai + b(j − r),

y = 1 + a(i + r) + bj, with r ∈ [−3, 3]. Now χ(y) = χ(z) implies that r is even. But then this
contradicts χ(x) = χ(y).

Let i be such that
∣

∣Si ∩ {x0, y0}
∣

∣ = 2. By Lemma 5, i /∈ [p+ 3, q − 3]. �

Remark 4. The result of Lemma 7 also holds for the colouring

χ1(1 + ai+ bj) =

{

0 if i ≡ 0, 3 mod 4, j is odd or i ≡ 1, 2 mod 4, j is even;
1 if i ≡ 1, 2 mod 4, j is odd or i ≡ 0, 3 mod 4, j is even.

obtained by applying Lemma 2 to Lemma 7. The result of Lemma 7 also holds for the colourings

χ2(1 + ai+ bj) =

{

0 if i ≡ 0, 1 mod 4, j is even or i ≡ 2, 3 mod 4, j is odd;
1 if i ≡ 0, 1 mod 4, j is odd or i ≡ 2, 3 mod 4, j is even.

and

χ3(1 + ai+ bj) =

{

0 if i is odd, j ≡ 2, 3 mod 4 or i is even, j ≡ 0, 1 mod 4;
1 if i is odd, j ≡ 0, 1 mod 4 or i is even, j ≡ 2, 3 mod 4.

Remark 5. Note that χ2 in Remark 4 reduces to the 2-colouring in the second case of Theorem 2.

We are now in a position to state and prove the result of the remaining case. The proof uses
explicitly the sequence given in Definition 2. We need to consider three cases: (i) b

a
or a

b
∈ (1, 43),

(ii) b
a
or a

b
∈ (43 , 2) and (iii) b

a
or a

b
> 2. Cases (i) and (iii) are further subdivided into two subcases:

(i) a ≡ 1 mod 4 and (ii) a ≡ 3 mod 4. Our proof involves a rather cumbersome case-by-case listing
of colourings as we have been unable to combine these colourings in a more meaningful manner.

Theorem 8. Let a, b be relatively prime positive integers such that 4 | b. If a 6= 1 and (a, b) 6= (3, 4),
there exists a 2-colouring of [1, 4(a+b)] which admits no monochromatic solution to ax+by = (a+b)z
with x, y, z distinct integers. In particular, n(a, b) = 4(a+ b) + 1.
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Proof. Consider the sequence {s0, . . . , sa+b}. For each i, 0 ≤ i ≤ a+ b, let Si := AP (si, a+ b; 4).

Case (i). (1 < b
a
< 4

3 or 1 < a
b
< 4

3)

We first consider the case a < b < 4
3a, and its two subcases: a ≡ 1 mod 4, and a ≡ 3 mod 4. Note

that b = 4
3a is only possible when b = 4 and a = 3, which we have already excluded.

Subcase (i) If a ≡ 1 mod 4, then a ≥ 5 since we have already considered a = 1. The smallest possible
value of a+ b that satisfies this case is 29, with (a, b) = (13, 16). Define χ : [1, 4(a + b)] → {0, 1} by
first defining it on

⋃0
i=−6 Si as follows.

S χ(S)

S−6, S−2, S0 1100

S−5, S−3 0011

S−1, S−4 0110

For n ∈ [1, 4(a + b)] \
⋃0

i=−6 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
j ∈ [4, a+ 3]. Define

χ(1 + ai+ bj) =

{

0 if i is odd, j ≡ 0, 1 mod 4 or i is even, j ≡ 2, 3 mod 4;
1 if i is even, j ≡ 0, 1 mod 4 or i is odd, j ≡ 2, 3 mod 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z. Define
i such that x, y ∈ Si. From Lemma 7, there is no monochromatic solution in

⋃a+b−4
i=1 Si. Note that

since
⋃−6

i=−10 Si and
⋃6

i=−1 Si also satisfy the second colouring in this case for j ∈ [2, a + 1] and

j ∈ [5, a + 4], respectively, there is no monochromatic solution in
⋃−6

i=−10 Si and
⋃6

i=−1 Si. By (1)
and Lemma 5, there remain the cases i ∈ [−6, 1].

i {x, y} {χ(x), χ(y)} z χ(z)

-6 {1 − 3a+ 3b, 1 + 6b} {1, 0} 1+3b 0

-5 {1− 2a+ 3b, 1 + a+ 6b} {0, 1} 1+a+3b 0

-4 {1− 2a+ 2b, 1 + a+ 5b} {0, 0} 1-2a+5b,1+a+2b 1

-4 {1− a+ 3b, 1 + 4b} {1, 1} 1-a+4b,1+3b 0

-3 {1− a+ 2b, 1 + 3b} {0, 0} 1-a+3b,1+2b 1

-3 {1 + a+ 4b, 1 + 2a+ 5b} {1, 1} 1+a+5b,1+2a+4b 0

-2 {1− a+ b, 1 + 2b} {1, 1} 1-a+2b,1+b 0

-2 {1 + a+ 3b, 1 + 2a+ 4b} {0, 0} 1+2a+3b,1+a+4b 1

-1 {1 + b, 1 + 3a+ 4b} {0, 0} 1+4b,1+3a+b 1

-1 {1 + a+ 2b, 1 + 2a+ 3b} {1, 1} 1+a+3b,1+2a+2b 0

0 {1, 1 + 3a+ 3b} {1, 0} 1+3b 0

1 {1 + a, 1 + 4a+ 3b} {0, 1} 1+a+3b 0

In each case, the solution sets are not monochromatic.

Subcase (ii) If a ≡ 3 mod 4, we further consider two cases: (a) a < b < 5
4a, and (b) 5

4a < b < 4
3a.

For a < b < 5
4a, the smallest possible value of a+ b that satisfies this case is 15, with (a, b) = (7, 8).

Define χ : [1, 4(a + b)] → {0, 1} by first defining it on
⋃3

i=−7 Si as follows.
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S χ(S)

S−7, S−3, S−1, S2 0011

S−6, S−4, S0, S3 1100

S−5, S−2, S1 0110

For n ∈ [1, 4(a + b)] \
⋃3

i=−7 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
j ∈ [3, a+ 2]. Define

χ(1 + ai+ bj) =

{

0 if i is odd, j ≡ 0, 3 mod 4 or i is even, j ≡ 1, 2 mod 4;
1 if i is even, j ≡ 0, 3 mod 4 or i is odd, j ≡ 1, 2 mod 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z. Define
i such that x, y ∈ Si. By Lemma 4, n ∈

⋃4
i=−2 Si can be uniquely expressed as 1 + ai + bj with

i ∈ [−1, b− 2], and also satisfy the following colouring.

χ(1 + ai+ bj) =

{

0 if i ≡ 0, 3 mod 4, j is odd or i ≡ 1, 2 mod 4, j is even;
1 if i ≡ 0, 3 mod 4, j is even or i ≡ 1, 2 mod 4, j is odd.

From Lemma 7, there is no monochromatic solution in
⋃4

i=−2 Si and in
⋃a+b−8

i=5 Si. By (1) and
Lemma 5, there remain the cases i ∈ [−10, 7] \ {1}.

i {x, y} {χ(x), χ(y)} z χ(z)

-10 {1− 5a+ 5b, 1− 2a+ 8b} {1, 0} 1-2a+5b 0

-9 {1− 4a+ 5b, 1− a+ 8b} {0, 1} 1-a+5b 0

-8 {1− 4a+ 4b, 1− a+ 7b} {0, 0} 1-a+4b 1

-8 {1− 3a+ 5b, 1− 2a+ 6b} {1, 1} 1-2a+5b 0

-7 {1− 2a+ 5b, 1− 3a+ 4b} {0, 0} 1-2a+4b,1-3a+5b 1

-7 {1− a+ 6b, 1 + 7b} {1, 1} 1-a+7b,1+6b 0

-6 {1− 3a+ 3b, 1− 2a+ 4b} {1, 1} 1-2a+3b,1-3a+4b 0

-6 {1− a+ 5b, 1 + 6b} {0, 0} 1+5b,1-a+6b 1

-5 {1− 2a+ 3b, 1 + a+ 6b} {0, 0} 1+a+3b,1-2a+6b 1

-5 {1− a+ 4b, 1 + 5b} {1, 1} 1-a+5b,1+4b 0

-4 {1− 2a+ 2b, 1− a+ 3b} {1, 1} 1-a+2b,1-2a+3b 0

-4 {1 + 4b, 1 + a+ 5b} {0, 0} 1+a+4b,1+5b 1

-3 {1− a+ 2b, 1 + 3b} {0, 0} 1-a+3b,1+2b 1

-3 {1 + a+ 4b, 1 + 2a+ 5b} {1, 1} 1+a+5b,1+2a+4b 0

-2 {1− a+ b, 1 + 2a+ 4b} {0, 0} 1+2a+b,1-a+4b 1

-2 {1 + 2b, 1 + a+ 3b} {1, 1} 1+a+2b,1+3b 0

-1 {1 + b, 1 + a+ 2b} {0, 0} 1+a+b,1+2b 1

-1 {1 + 3a+ 4b, 1 + 2a+ 3b} {1, 1} 1+3a+3b,1+2a+4b 0

0 {1, 1 + 3a+ 3b} {1, 0} 1+3b 0

2 {1 + 2a, 1 + 5a+ 3b} {0, 1} 1+5a 0

3 {1 + 2a− b, 1 + 3a} {1, 1} 1+3a-b 0

3 {1 + 4a+ b, 1 + 5a+ 2b} {0, 0} 1+5a+b 1

4 {1 + 3a− b, 1 + 6a+ 2b} {0, 0} 1+3a+2b 1

4 {1 + 4a, 1 + 5a+ b} {1, 1} 1+4a+b 0

5 {1 + 3a− 2b, 1 + 6a+ b} {1, 0} 1+3a+b 0

6 {1 + 4a− 2b, 1 + 7a+ b} {0, 1} 1+4a+b 0
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Note that for (a, b) = (7, 8), S−10 = S5 and S−9 = S6, but χ(S−10) = χ(S5) and χ(S−9) = χ(S6).
Hence the above cases hold. In each case, the solution sets are not monochromatic.

For the case 5
4a < b < 4

3a, we shift the colouring χ used for the case a < b < 5
4a. For 5

4a < b < 4
3a,

the smallest possible value of a + b that satisfies this case is 43, with (a, b) = (19, 24). Define
χ′ : [1, 4(a + b)] → {0, 1} by first defining it on

⋃13
i=−5 Si as follows.

χ′(Si) =















χ(Si−2) if i ∈ [−5, 0];
χ(Si−7) if i ∈ [3, 13];
1001 if i = 1;
0110 if i = 2.

For n ∈ [1, 4(a + b)] \
⋃13

i=−5 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
i ∈ [8, b + 7]

χ′(1 + ai+ bj) =

{

0 if i is odd, j ≡ 0, 1 mod 4 or i is even, j ≡ 2, 3 mod 4;
1 if i is odd, j ≡ 2, 3 mod 4 or i is even, j ≡ 0, 1 mod 4.

We show that χ′ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ′(x) = χ′(y) = χ′(z), where x, y, z are distinct integers satisfying ax+by = (a+b)z. Define
i such that x, y ∈ Si. By Lemma 4, n ∈

⋃5
i=−3 Si can be uniquely expressed as 1 + ai + bj with

i ∈ [−1, b− 2], and also satisfy the following colouring.

χ(1 + ai+ bj) =

{

0 if i is even, j ≡ 0, 1 mod 4 or i is odd, j ≡ 2, 3 mod 4;
1 if i is odd, j ≡ 0, 1 mod 4 or i is even, j ≡ 2, 3 mod 4.

Note that S12, S13, S14 also satisfy the second colouring in this case. From Lemma 7, there is no
monochromatic solution in

⋃5
i=−3 Si and

⋃a+b−6
i=11 Si. Note that χ

′(Si) = χ(Si−2) for i ∈ {−8,−7,−6}.
For i ∈ [−8, 0], solutions {x, y, z} under χ′ correspond to solutions {x−a+b, y−a+b, z−a+b} under
χ; for i ∈ [3, 15], solutions {x, y, z} under χ′ correspond to solutions {x−4a+3b, y−4a+3b, z−4a+3b}
under χ. Hence there can be no monochromatic solution when x, y, z ∈

⋃0
i=−8 Si and in

⋃15
i=3 Si.

There remain the cases i ∈ {3, 5}.

i {x, y} {χ(x), χ(y)} z χ(z)

3 {1 + 2a− b, 1 + 3a} {1, 1} 1+2a 0

3 {1 + 4a+ b, 1 + 5a+ 2b} {0, 0} 1+4a+2b 1

5 {1 + 3a− 2b, 1 + 6a+ b} {0, 0} 1+6a-2b 1

5 {1 + 4a− b, 1 + 5a} {1, 1} 1+5a-b 0

In each case, the solution sets are not monochromatic.

We now consider the case b < a < 4
3b. For b < a < 4

3b, the smallest possible value of a+ b that
satisfies this case is 9, with (a, b) = (5, 4). By Lemma 4, n can be uniquely expressed as 1 + ai+ bj
with i ∈ [−1, b−2]. Define χ : [1, 4(a+ b)] → {0, 1} by first defining it on

⋃2
i=−4 Si as follows. Define

χ(1 + ai+ bj) =

{

0 if i is even, j ≡ 0, 3 mod 4 or i is odd, j ≡ 1, 2 mod 4;
1 if i is odd, j ≡ 0, 3 mod 4 or i is even, j ≡ 1, 2 mod 4.
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For n ∈ [1, 4(a + b)] \
⋃2

i=−4 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
i ∈ [3, b + 2]

χ(1 + ai+ bj) =

{

0 if i ≡ 1, 2 mod 4, j is even or i ≡ 0, 3 mod 4, j is odd;
1 if i ≡ 1, 2 mod 4, j is odd or i ≡ 0, 3 mod 4, j is even.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+by = (a+b)z. Define i
such that x, y ∈ Si. From Lemma 7, there is no monochromatic solution in

⋃a+b−5
i=3 Si and in

⋃2
i=−4 Si.

By (1) and Lemma 5, there remain the cases i ∈ [−7, 5] \ {−1}. Since χ(Si) ∈ {0011, 1100} for
i ∈ {−6,−3,−2, 0, 1, 4}, r 6= 3 in these cases, and so there remain the cases i ∈ {−7,−5,−4, 2, 3, 5}.

i {x, y} {χ(x), χ(y)} z χ(z)

-7 {1− 3a+ 4b, 1 + 7b} {1, 1} 1+4b 0

-5 {1− 2a+ 3b, 1 − a+ 4b} {0, 0} 1-a+3b 1

-5 {1 + 5b, 1 + a+ 6b} {1, 1} 1+a+5b 0

-4 {1− a+ 3b, 1 + 2a+ 6b} {1, 1} 1-a+6b 0

-4 {1 + 4b, 1 + a+ 5b} {0, 0} 1+5b 1

2 {1 + a− b, 1 + 4a+ 2b} {1, 1} 1+4a-b 0

2 {1 + 2a, 1 + 3a+ b} {0, 0} 1+3a 1

3 {1 + 2a− b, 1 + 3a} {1, 1} 1+2a 0

3 {1 + 4a+ b, 1 + 5a+ 2b} {0, 0} 1+4a+2b 1

5 {1 + 3a− 2b, 1 + 6a+ b} {1, 1} 1+3a+b 0

Note that for (a, b) = (5, 4), S−7 = S2 and S−5 = S4. But χ(S−7) = χ(S2) and χ(S−5) = χ(S4).
Hence the above cases hold. In each case, the solution sets are not monochromatic.

Case (ii). (43 < b
a
< 2 or 4

3 < a
b
< 2)

We consider the case 4
3 < b

a
< 2. For 4

3 < b
a
< 2, the smallest possible value of a+ b that satisfies this

case is 13, with (a, b) = (5, 8). The argument for the other case is obtained by interchanging the roles
of a and b, and is omitted. Recall that {S0, . . . , Sa+b−1} partitions [1, 4(a + b)], by Lemma 3. Set
Sf(j) = AP (j, a+ b; 4), with j = 1 if b < 3

2a and j = b− a if b > 3
2a. Define χ : [1, 4(a+ b)] → {0, 1}

by

χ(§i) =















0011 if i+ f(j) is odd, i ∈ [f(j) + 5, a+ b+ f(j) + 2];
1100 if i+ f(j) is even, i ∈ [f(j) + 5, a+ b+ f(j) + 2];
0110 if i = f(j) + 3;
1001 if i = f(j) + 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z. Define
i such that x, y ∈ Si. From Lemmas 5 and 6, it follows that there can be no monochromatic solution
if i ∈ [f(j) + 6, a+ b+ f(j) + 1]. Now suppose i ∈ {f(j) + 2, f(j) + 3, f(j) + 4, f(j) + 5}. Note that
s2 = 2a+ j, s3 = 2a− b+ j, s4 = 3a− b+ j, and s5 = 3a− 2b+ j in this case.
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i {x,y} {χ(x), χ(y)} z χ(z)

f(j)+2 {3a+b+j,2a+j} {0,0} 3a+j 1

f(j)+2 {5a+3b+j,4a+2b+j} {1,1} 5a+2b+j 0

f(j)+3 {2a-b+j,5a+2b+j} {0,0} 2a+2b+j,5a-b+j 1

f(j)+3 {3a+j,4a+b+j} {1,1} 3a+b+j,4a+j 0

f(j)+4 {6a+2b+j,3a-b+j} {1,1} 6a-b+j,3a+2b+j 0

f(j)+4 {5a+b+j,4a+j} {0,0} 5a+j,4a+b+j 1

f(j)+5 {4a-b+j,3a-2b+j} {0,0} 4a-2b+j 1

f(j)+5 {5a+j,6a+b+j} {1,1} 5a+b+j 0

In each case, the solution sets are not monochromatic.

Case (iii). ( b
a
> 2 or a

b
> 2)

We first consider the case b > 2a, and its two subcases: a ≡ 1 mod 4, and a ≡ 3 mod 4. Set
M = ⌊2b

a
⌋.

Subcase (i) If a ≡ 1 mod 4, then the smallest possible value of a + b that satisfies this case is 17,
with (a, b) = (5, 12). Define χ : [1, 4(a + b)] → {0, 1} by

χ(Si) =

{

0011 if i ∈ [−3,M + 3] and i is odd;
1100 if i ∈ [−3,M + 3] and i is even.

For n ∈ [1, 4(a + b)] \
⋃M+3

i=−3 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
i ∈ [2, b + 1]. Define

χ(1 + ai+ bj) =

{

0 if i is odd, j ≡ 1, 2 mod 4 or i is even, j ≡ 0, 3 mod 4;
1 if i is odd, j ≡ 0, 3 mod 4 or i is even, j ≡ 1, 2 mod 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z. Define
i such that x, y ∈ Si. From Lemmas 5 and 7, it follows that there can be no monochromatic solution
if i ∈ [−2,M + 2]. From Lemma 6, there is no monochromatic solution in

⋃a+b−4
i=M+4 Si. Note that for

i = M +4, si = 1+(M +2)a− 2b. Thus χ(SM+4) = 0011 when M is odd and 1100 when M is even.
Similarly for i = M + 5, si = 1 + (M + 3)a − 2b, and χ(SM+5) = 0011 when M is even and 1100
when M is odd. By Lemma 5, i /∈ {M + 3,M + 4}. By (1) and Lemma 7, there remain the cases
i ∈ {M + 5,M + 6, a+ b− 6, a+ b− 5, a + b− 4, a+ b− 3}.

i {x,y} {χ(x), χ(y)} z χ(z)

M+5 {1+(M+3)a-2b,1+(M+6)a+b} {0,1} 1+(M+3)a+b 0

M+6 {1+(M+4)a-2b,1+(M+7)a+b} {1,0} 1+(M+4)a+b 1

M+6 {1+(M+3)a-3b,1+(M+6)a} {0,0} 1+(M+3)a 1

a+b-6 {1-a+5b,1-4a+2b} {1,1} 1-a+2b 0

a+b-6 {1-2a+4b,1-5a+b} {0,1} 1-2a+b 0

a+b-5 {1+5b,1-3a+2b} {0,0} 1+2b 1

a+b-5 {1-a+4b,1-4a+b} {1,0} 1-a+b 1

a+b-4 {1+a+5b,1-2a+2b} {0,1} 1+a+2b 0

a+b-4 {1+4b,1-a+3b} {0,0} 1+3b 1

a+b-4 {1-2a+2b,1-3a+b} {1,1} 1-2a+b 0

a+b-3 {1-2a+b,1-a+2b} {0,0} 1-2a+2b 1

a+b-3 {1+3b,1+a+4b} {1,1} 1+4b 0
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In each case, the solution sets are not monochromatic.

Subcase (ii) If a ≡ 3 mod 4, the smallest possible value of a + b that satisfies this case is 11, with
(a, b) = (3, 8). Define χ : [1, 4(a + b)] → {0, 1} by

χ(Si) =

{

0011 if i ∈ [−3, 2] and i is odd;
1100 if i ∈ [−3, 2] and i is even.

For n ∈ [1, 4(a+b)]\
⋃2

i=−3 Si, by Lemma 4, n can be uniquely expressed as 1+ai+bj with i ∈ [1, b].
Define

χ(1 + ai+ bj) =

{

0 if i is odd, j ≡ 0, 3 mod 4 or i is even, j ≡ 1, 2 mod 4;
1 if i is odd, j ≡ 1, 2 mod 4 or i is even, j ≡ 0, 3 mod 4.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+by = (a+b)z. Define i
such that x, y ∈ Si. Note that

⋃a+b−1
i=a+b−6 Si also satisfies the second colouring for i ∈ [4, b+3], S1, S2

also satisfy the second colouring for i ∈ [1, b], and S3 also satisfies the first colouring in this case.
From Lemmas 5 and 6, it follows that there can be no monochromatic solution if i ∈ [−2, 2]. From
Lemma 7, there is no monochromatic solution in

⋃a+b−1
i=1 Si. By (1) and Lemma 5, there remain the

cases i ∈ {3, a+b−3}. But χ(S3) = χ(S−3) = 0011. By (1), r 6= 3, so that there is no monochromatic
solution in this case by Lemma 5.

We now consider the case a > 2b. Set m = ⌊a
b
⌋. For a > 2b, the smallest possible value of a+ b

that satisfies this case is 13, with (a, b) = (9, 4). Define χ : [1, 4(a + b)] → {0, 1} by

χ(Si) =

{

0011 if i ∈ [−3,m+ 1] and i is odd;
1100 if i ∈ [−3,m+ 1] and i is even.

For n ∈ [1, 4(a + b)] \
⋃m+1

i=−3 Si, by Lemma 4, n can be uniquely expressed as 1 + ai + bj with
j ∈ [3, a+ 2]. Define

χ(1 + ai+ bj) =

{

0 if i ≡ 1, 2 mod 4, j is even or i ≡ 0, 3 mod 4, j is odd;
1 if i ≡ 1, 2 mod 4, j is odd or i ≡ 0, 3 mod 4, j is even.

We show that χ admits no monochromatic solution to ax+by = (a+b)z with x, y, z distinct integers.

Suppose χ(x) = χ(y) = χ(z), where x, y, z are distinct integers satisfying ax+ by = (a+ b)z. Define
i such that x, y ∈ Si. Note that Sm+2, Sm+3, Sm+4 also satisfy the first colouring, and

⋃0
i=−6 Si also

satisfies the second colouring for j ∈ [0, a − 1]. From Lemmas 5 and 6, it follows that there can be
no monochromatic solution if i ∈ [−2,m + 3]. From Lemma 6, there is no monochromatic solution
in

⋃0
i=−6 Si. By (1) and Lemma 6, there remains the case i = m+ 4. But since |r| = 1 in this case,

{x, y, z} ∈
⋃a+b−3

i=m+2 Si, which contradicts Lemma 7. �

The results given by Theorems 2,4,6 and 7 completely determine the Rado number corresponding to
the equation ax+ by = (a+ b)z. We state this as our final result.

Theorem 9. Let a, b be relatively prime positive integers. Then

n(a, b) =

{

4(a+ b)− 1 if a = 1, 4 | b or (a, b) = (3, 4);
4(a+ b) + 1 otherwise.
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Selected Papers in Honour of Paul Erdős on the Occasion of His 80th Birthday, Keszthely, 1993,
Discrete Math. 150 (1996) 49–60.

[4] S. Burr & S. Loo, On Rado numbers I, unpublished.

[5] A. Bialostocki & D. Schaal, On a variation of Schur numbers, Graphs Combin. 16 (2000), 139–147.

[6] W. Deuber, Developments based on Rado’s dissertation “Studien zur Kombinatorik”, Survey
Combin., Cambridge University Press, 1989, 52–74.

[7] S. Guo & Z-W. Sun, Determination of the two-colour Rado number for a1x1 + · · ·+ amxm = x0,
J. Combin. Theory Ser. A 115 (2008), 345–353.

[8] H. Harborth & S. Maasberg, Rado numbers for homogeneous second order linear recurrences -
degree of partition regularity, Congr. Numer. 108 (1995), 109–118.

[9] H. Harborth & S. Maasberg, Rado numbers for Fibonacci sequences and a problem of S. Ra-
binowits, in: G.E. Bergum (Ed.), Applications of Fibonacci Numbers, vol. 6, Kluwer Academic
Publishers, 1996, pp. 143–153.

[10] H. Harborth & S. Maasberg, Rado numbers for a(x + y) = bz, J. Combin. Theory Ser. A 80
(1997), 356–363.

[11] H. Harborth & S. Maasberg, All two-colour Rado numbers for a(x + y) = bz, Discrete Math.
197/98 (1999), 397–407.

[12] B. Hopkins & D. Schaal, On Rado numbers for
∑m−1

i=1 aixi = xm, Adv. Appl. Math. 35 (2005),
433–431.

[13] S. Jones & D. Schaal, Some 2-color Rado numbers, Congr. Numer. 152 (2001), 197–199.

[14] S. Jones & D. Schaal, A class of two-color Rado numbers, Discrete Math. 289 (1-3) (2004),
63–69.

[15] W. Kosek & D. Schaal, Rado numbers for the equation
∑m−1

i=1 xi + c = xm for negative values
of c, Adv. Appl. Math. 27 (2001) 805–815.

[16] B. M. Landman & A. Robertson, Ramsey Theory on the Integers, Student Mathematical Library,
vol. 24, Amer. Math. Soc., 2004.

20



[17] R. Rado, Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Prob-
lem zer Zahlentheorie, Sonderausg. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 17 (1933),
1–10.

[18] R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), 242–280.

[19] R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. 48 (1936), 122–160.

[20] A. Robertson & D. Schaal, Off-diagonal generalized Schur numbers, Adv. Appl. Math. 26 (2001),
252–257.

[21] D. Schaal, On generalized Schur numbers, Congr. Numer. 98 (1993), 178–187.

[22] I. Schur, Uber die Kongruenz xm + ym = zm (mod p), Jahresber. Deutsch. Math.-Verein. 25
(1916), 114–117.

21


