
Combinatorial Structures in
Online and Convex Optimization

by

Swati Gupta
B. Tech & M. Tech (Dual Degree), Computer Science and Engineering,

Indian Institute of Technology (2011)

Submitted to the
Sloan School of Management

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Operations Research

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Sloan School of Management

May 19, 2017
Certified by. .

Michel X. Goemans
Leighton Family Professor

Department of Mathematics
Thesis Supervisor

Certified by. .
Patrick Jaillet

Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science

Thesis Supervisor
Accepted by .

Dimitris Bertsimas
Boeing Leaders for Global Operations

Co-director, Operations Research Center

2

Combinatorial Structures in

Online and Convex Optimization

by

Swati Gupta

Submitted to the Sloan School of Management
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Motivated by bottlenecks in algorithms across online and convex optimization, we consider
three fundamental questions over combinatorial polytopes.

First, we study the minimization of separable strictly convex functions over polyhedra.
This problem is motivated by first-order optimization methods whose bottleneck relies on
the minimization of a (often) separable, convex metric, known as the Bregman divergence.
We provide a conceptually simple algorithm, Inc-Fix, in the case of submodular base poly-
hedra. For cardinality-based submodular polytopes, we show that Inc-Fix can be speeded
up to be the state-of-the-art method for minimizing uniform divergences. We show that the
running time of Inc-Fix is independent of the convexity parameters of the objective function.

The second question is concerned with the complexity of the parametric line search prob-
lem in the extended submodular polytope 𝑃 : starting from a point inside 𝑃 , how far can
one move along a given direction while maintaining feasibility. This problem arises as a
bottleneck in many algorithmic applications like the above-mentioned Inc-Fix algorithm and
variants of the Frank-Wolfe method. One of the most natural approaches is to use the
discrete Newton’s method, however, no upper bound on the number of iterations for this
method was known. We show a quadratic bound resulting in a factor of 𝑛6 reduction in the
worst-case running time from the previous state-of-the-art. The analysis leads to interesting
extremal questions on set systems and submodular functions.

Next, we develop a general framework to simulate the well-known multiplicative weights
update algorithm for online linear optimization over combinatorial strategies 𝒰 in time poly-
nomial in log |𝒰|, using efficient approximate general counting oracles. We further show that
efficient counting over the vertex set of any 0/1 polytope 𝑃 implies efficient convex mini-
mization over 𝑃 . As a byproduct of this result, we can approximately decompose any point
in a 0/1 polytope into a product distribution over its vertices.

Finally, we compare the applicability and limitations of the above results in the context

3

of finding Nash-equilibria in combinatorial two-player zero-sum games with bilinear loss
functions. We prove structural results that can be used to find certain Nash-equilibria with
a single separable convex minimization.

Thesis Supervisor: Michel X. Goemans
Title: Leighton Family Professor
Department of Mathematics

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor
Department of Electrical Engineering and Computer Science

4

Acknowledgments

“As we express our gratitude, we must never forget that the highest appreciation is not to

utter words, but to live by them." - John F. Kennedy.

My journey at MIT would not have been this wonderful without selfless mentorship, close

friendships, and the love of many.

My deepest gratitude goes to my advisors Michel Goemans and Patrick Jaillet. Through-

out the past six years, Michel has amazed me with his enthusiasm for mathematics, for

proving things in the best way possible, and his patience in improving my technical writing.

I deeply appreciate the considerable amount of time and effort that he has put forth while

working with me. I really admire Patrick for providing direction to research, his approacha-

bility and extraordinary work ethic. His mentorship and positivity has been an inspiration

and I would like to thank Patrick for always lending me a friendly ear whenever I was in

doubt or needed any help. It has been an absolute pleasure to learn from Michel and Patrick

and I will always cherish our research meetings together. I am really thankful to them for

giving me the freedom to pursue different research ideas and a lot of extremely valuable

advice in making critical career decisions. I can think of no two other faculty members who

would be such great co-advisors, and I will always look up to you both for advice and guid-

ance! I would also like to thank Rico Zenklusen for his mentorship and friendship during my

first year at MIT, and will always remember fondly our conversation about calling professors

by their first name.

I will forever be grateful to Jim Orlin for providing me valuable feedback on my writing

and presentation skills, for being on my thesis committee and advising me about the academic

job market. I had the opportunity to be a teaching assistant for a course taught by Jim, and

this was a great experience for me that helped me strengthen my decision to be in academia.

I feel fortunate to have been a student at MIT during Sasha Rakhlin’s sabbatical here. I

want to extend a special thanks to him for his infectious enthusiasm for online learning, for

being on my thesis committee and for being an amazing mentor. I would like to thank Sasha

for several exciting mathematical discussions and his unique perspective on the connections

between learning and optimization.

5

I would like to wholeheartedly thank Georgia Perakis for always looking out for me,

advising me and being the strong female role model I needed. I want to thank her for

introducing me to the wonderful field of revenue management and pricing. Working with

Georgia has made me think about OR practices feasible for the industry, given their practical

business considerations. I am really touched that I made it to your tree of students Georgia,

I have always felt like the "unofficial" member of your wonderful research group!

I would like to give heartfelt thanks to Dimitris Bertsimas for also looking out for me,

checking up with me multiple times throughout graduate school, and for always being straight

with me. I had the opportunity of working with Dimitris on a vehicle routing research project.

My interactions with him have always given me something to think about, beyond solving

the bottlenecks in our project. If I may say so, Dimitris had the strongest opinion orthogonal

to my taste in research, but it has definitely expanded the convex hull of problems I care

about and I want to really thank you for that! I will always look up to you and Georgia for

advice in years to come.

I am forever grateful to Martin Demaine for being my external voice of reason and

support. I love him for making me believe in myself, for inspiring me to think outside

the box, for making me expand what I perceived as the boundary of my abilities. I am so

thankful that you stopped by my ambigram stall at the art fair and we started this wonderful

friendship. I will always cherish our brainstorming sessions on installations and art projects,

and I hope that I can bring some of these to life one day.

There are many faculty members at the Operations Research Center who I have learnt

from a lot, both in classes and during the seminars. I would like to especially thank Rob

Fruend for being a great teacher, mentor and for his useful advice on convex optimization

algorithms. The research presented in this thesis started with a question posed by Costis

Daskalakis: whether the multiplicative weights update algorithm can be simulated for a large

number of strategies, and I would like to give him heartfelt thanks for this beginning. Thank

you for teaching us linear programming from a polyhedral perspective, Andreas Schulz, we

miss you at MIT! I would also like to sincerely thank Laura Rose and Andrew Carvahlo

for managing the deadlines and course requirements extremely well, despite my absent-

mindedness. I had the opportunity to get to know Suvrit Sra and Stefanie Jegelka towards

6

the end of my graduate studies. They were my eyes into the world of machine learning

and it is thanks to them that I had the courage of sending a submission to NIPS and the

workshops there. I would like to also thank all the wonderful seminar speakers at ORC,

LIDS and CSAIL for thought provoking discussions.

Collaborations with multiple people have been one of the highlights of my journey at

MIT. As someone once told me, make the most of your time in graduate school by talking

to as many people as you can, and I am really glad I was able to. I would like to thank

my wonderful collaborators John Silberholz and Iain Dunning for our work on the graph

conjecture generator, Maxime Cohen and Jeremy Kalas for their insights into the pricing

world, Joel Tay for our adventures with various formulations of the vehicle routing problem.

I have learnt a lot from you guys and really want to thank you for that! Also, thanks Lennart

Baardman for helping me with some computations even though we have not collaborated

directly on a project.

Patrick’s research group has been like my academic family here at MIT, and I would

like to thank Max, Virgille, Konstantina, Maokai, Andrew, Xin, Dawsen, Chong, Nikita,

Sebastien and Arthur for enlightening discussions on technical ideas. I would also like to

thank Juliane Dunkel, Jacint Szabo and Marco Laummans at IBM Research Zurich for

an exciting summer of railway scheduling! The mountain climbing trips to the Braunwald

Klettersteig and the one in Brunnistöckli have been one of the most amazing experiences

of my life, and would like to thank the business optimization group for taking me there,

especially Ulrich Schimpel for literally pushing me to climb!

I would like to thank faculty at IIT Delhi, especially Naveen Garg for making me get

addicted to the traveling salesman problem, Amitabha Tripathi for inculcating a love for

graph theory; thank you both for encouraging me to pursue graduate studies. I would also

like to thank my uncle, Atul Prakash, for inviting me to the University of Michigan for a

summer project that sparked my enthusiasm for research.

I would like to take this opportunity to document some invaluable advice and guidance I

have received in my research career thus far and hope that this serves as a reminder for me

in the years to come: One should only write papers when they think that have an interesting

idea to share. One needs to be critical of every step in their proof, think of why each step is

7

needed and if the proof can be said in simpler terms. One should question every assumption

in their work: either give an example of why their argument would not hold without the

assumption or try to remove the assumption to obtain a more general statement. It helps to

have a bigger question in your mind, and solve smaller more feasible questions that might

help you solve the big one. It is important to make your work accessible to people and it is

okay to add simplified lemmas for useful special cases. It is okay to think of many questions

and ideas at a time, just like art these ideas evolve and influence each other. Everyone’s taste

in research can be different, some people might share the same enthusiasm for your work,

some may not. When selecting which problem you want to work on, it is good to think of

why solving the problem is important in the first place. You do not have to be like anyone

else, you can be your own unique self!

No PhD can be completed without the support and love of friends. I want to first and

foremost thank my friends, Nataly and John. I will always fondly remember our homework

solving sessions in our first year with a ready supply of John’s candy and Nataly’s delicious

lebanese food, our power of exponentials lesson, uber competitive badminton matches with

John, and Nataly’s infinite wisdom on worldly matters. I will cherish most our first ORC

retreat together and all of the stories from that party that have been told uncountable

number of times in the past years. I would like to also thank my amazing friends Joel,

Iain, Paul, Rajan, Nishanth, Leon, He, David, Rhea, Kris, Angie, Fernanda, Vishal, Adam,

Ross, Will, Phebe, Miles, Joline, Nishanth, Allison, Velibor, Andrew, Chaitanya, Yehua,

Xin, Yaron, Ilias, Michael, Miles, Nathan, Rim, Ross, Tamar, Lennart, Alex, Wei, Deeksha,

Jacopo, Amanda, Sarah(s), Divya and Soumya for their love and friendship.

I would like to thank Praneeth for inspiring me with his dedication to his research and

standing by me come what may, Vibhuti for being my roommate and for exciting discussions

ranging from viruses to cancer cells to writing sci-fi stories, Shreya for being my mate at

LIDS and for our lunches together. I would like to thank Siddharth and Harshad for listening

to my proofs even though nothing made sense to them, and Abhinav and Anushree for their

sound advice. Through ups and downs of the graduate student life, I have shared many

wonderful memories with my roommates - Will, Elyot, Shefali, Padma and Anirudh - and

I would like to thank them all. A big shout out to teams Sangam and AID MIT and all

8

my friends there for the wonderful times! Even while being much away from me and far

from a PhD life, I would like to thank from the bottom of my heart my friend Abhiti, who

has always been just a phone call away to cheer me on. Thank you Abha, Ekta, Shashank,

Raman and Anshul for exciting discussions, adventures and board games!

Last but definitely not the least, I would like to thank my family who have been my

pillars of support throughout. I would first and foremost like to thank my parents, Sujata

and Shyam, for providing me unconditional love and belief in my abilities during my graduate

studies, and for doing everything in their power to help me achieve what I wanted. Words

cannot express what your support has meant to me. My sister Sakshi for her much-needed

wise cracks and fierceness for me, Amit bhaiya for being my sounding board specially ordered

from New York, mausi for her infinite worldly wisdom and circle theory, mausa for his unique

commentary on life, Ashu bhaiya and Aarti for their cool management advice and support,

didi and jiju for inspiring me with your creativity, and a big hug to my extended family for

being there for me always.

I would like to give my heartfelt thanks to my husband and best friend, Tushar, for

literally being there for me, for believing in me, for inspiring me, for making me laugh, for

remembering mathematical terms from my thesis and throwing them back at me in random

sentences - I cannot even begin to imagine my thesis (and my life) without him. Whenever

I would feel low for any reason, he had the special skill of somehow coming up with an

anecdote to lessen my worries and cheer me up. Nenu ninnu chhala premistunnanu!

Finally, I would like to dedicate this thesis to my grandparents: Tirath nana who never

understood why I would want to solve the problems of traveling salesmen yet always keeps

me in his prayers, Anand nana who has always advised me to direct my thoughts into writing,

babaji who taught me to how to compute fractions, dadi who always proud to see a bit of

my father in me, and Satyavathi nani who has always blessed me and loved me as her own.

Lastly I would like to acknowledge various sources of funding that have supported my research during

graduate school: NSF grant OR-1029603, ONR grant N00014-12-1-0999, ONR grant N00014-15-1-2083,

ONR contract N00014-14-1-0072, ONR contract N00014-17-1-2177, ONR grant N00014-16-1-2786 and NSF

contract CCF-1115849.

9

10

Contents

1 Introduction 19

1.1 Separable convex minimization . 20

1.2 Parametric line search . 23

1.3 Generalized approximate counting . 25

1.4 Nash-equilibria in two-player games . 27

1.5 Roadmap of thesis . 29

2 Background 31

2.1 Notation . 31

2.2 Background . 32

2.2.1 Submodular functions and their minimization 32

2.2.2 First-order optimization methods . 37

2.2.3 Online learning framework . 43

2.3 Related Work . 46

3 Separable Convex Minimization 51

3.1 The Inc-Fix algorithm . 54

3.2 Correctness of Inc-Fix . 59

3.2.1 Equivalence of problems . 64

3.2.2 Rounding to approximate solutions 65

3.3 Implementing the Inc-Fix algorithm . 68

3.3.1 𝑂(𝑛) parametric gradient searches . 68

3.3.2 𝑂(𝑛) submodular function minimizations 71

11

3.3.3 Running time for Inc-Fix . 76

3.4 Cardinality-based submodular functions . 78

3.4.1 Card-Fix algorithm . 80

4 Parametric Line Search 87

4.1 Ring families . 91

4.2 Analysis of discrete Newton’s Algorithm . 94

4.2.1 Weaker cubic upper bound . 97

4.2.2 Quadratic upper bound . 101

4.3 Geometrically increasing sequences . 103

4.3.1 Interval submodular functions . 103

4.3.2 Cut functions . 105

5 Approximate Generalized Counting 107

5.1 Online linear optimization . 110

5.2 Convex optimization . 117

6 Nash-Equilibria in Two-player Games 125

6.1 Using the ellipsoid algorithm . 127

6.2 Bregman projections v/s approximate counting 131

6.3 Combinatorial Structure of Nash-Equilibria 137

7 Conclusions 143

7.1 Summary . 143

7.2 Open Problems . 144

7.2.1 Separable convex minimization . 144

7.2.2 Parametric line search . 146

7.2.3 Generalized approximate counting . 146

7.2.4 Nash-equilibria in two-player games 147

A First-order optimization methods 149

B Examples of Nash-equilibria 153

12

List of Figures

2-1 Primal-style algorithms always maintain a feasible point in the submodular

polytope 𝑃 (𝑓). Dual-style algorithms work by finding violated constraints till

they find a feasible point in 𝐵(𝑓). 47

3-1 Illustrative gradient space and polytope view of Example 1 that shows Inc-

Fix computations for projecting 𝑦 = (0.05, 0.07, 0.6) under the squared Eu-

clidean distance onto 𝐵(𝑓), where 𝑓(𝑆) = 𝑔(|𝑆|) and 𝑔 = [0.4, 0.6, 0.7]. Pro-

jected point is 𝑥(3) = (0.14, 0.16, 0.4). 58

3-2 Illustrative gradient space and polytope view of Example 2 that shows Inc-

Fix computations for projecting 𝑦 = (0.05, 0.07, 0.6) under KL-divergences

onto 𝐵(𝑓), where 𝑓(𝑆) = 𝑔(|𝑆|), 𝑔 = [0.4, 0.6, 0.7]. Projected point is 𝑥(3) =

(0.125, 0.175, 0.4). 59

3-3 Different choices of concave functions 𝑔(·), such that 𝑓(𝑆) = 𝑔(|𝑆|), result in

different cardinality-based polytopes; (a) permutations if 𝑓(𝑆) =
∑︀|

𝑠=1 𝑆|(𝑛−

1 + 𝑠), (b) probability simplex if 𝑓(𝑆) = 1, (c) k-subsets if 𝑓(𝑆) = min{𝑘, |𝑆|}. 78

3-4 Squared Euclidean, entropic, logistic and Itakura-Saito Bregman projections

of the (dotted) vector 𝑦 onto the cardinality-based submodular polytopes given

by different randomly selected concave functions 𝑔(·). We refer to the corre-

sponding projected vector in each case by 𝑥. The threshold function is of the

form 𝑔(𝑖) = min{𝛼𝑖, 𝜏} constructed by selecting a slope 𝛼 and a threshold 𝜏

both uniformly at random. 80

4-1 Illustration of Newton’s iterations and notation in Lemma 4.1. 90

4-2 Illustration for showing that ℎ𝑖+1 + ℎ𝑖
𝑔𝑖+1

𝑔𝑖
≤ ℎ𝑖, as in Lemma 4.2. 96

13

4-3 Illustration of the sets 𝐽𝑔 and 𝐽ℎ and the bound on these required to show

an 𝑂(𝑛3 log 𝑛) bound on the number of iterations of the discrete Newton’s

algorithm. 97

5-1 An intuitive illustration to show a polytope in R𝑂(𝑛2) raised to the simplex of

its vertices, that lies in R𝑂(𝑛𝑛−2) space. 119

6-1 (a) 𝐺 = (𝑉,𝐸), (b) Optimal strategy for the row player minimizing the weight

of the intersection of the two strategies, (c) Optimal strategy for the column

player maximizing the weight of the intersection. 129

B-1 (a) 𝐺3 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer) (c)

Optimal strategy for the column player (maximizer). 154

B-2 (a) 𝐺4 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer), (c)

Optimal strategy for the column player (maximizer). 154

B-3 (a) 𝐺5 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer), (c)

Optimal strategy for the column player (maximizer). 155

14

List of Tables

2.1 Examples of common base polytopes and the submodular functions (on ground

set of elements 𝐸) that give rise to them. 33

2.2 Examples of some uniform separable mirror maps and their corresponding

divergences. Itakura-Saito distance [Itakura and Saito, 1968] has been used

in processing audio signals and clustering speech data (for e.g. in [Banerjee

et al., 2005]). 40

3.1 Examples of strictly convex functions and their domains, derivatives with their

domains, inverses and their strong-convexity parameters. Refer to Section

2.2.2 for a discussion. 55

3.2 Valid choices for the starting point 𝑥(0) when minimizing 𝐷𝜔(𝑥, 𝑦) using the

Inc-Fix algorithm, such that either 𝑥(0) = 0 or ∇ℎ(𝑥(0)) = 𝛿𝜒(𝐸). In each

case, we can select 𝛿 to be sufficiently negative such that 𝑥(0) ∈ 𝑃 (𝑓). 55

3.3 Running times for the Inc-Fix method using different algorithms for sub-

modular function minimization. In the running time for [Nagano, 2007a], 𝑘 is

the length of the strong map sequence. 76

5.1 List of known results for approximate counting over combinatorial strategies

and efficient simulation of the MWU algorithm using product distributions. 118

A.1 Mirror Descent and its variants. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is

𝜅-strongly convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) −min𝑥∈𝑋 𝜔(𝑥), 𝜂

is the learning rate. This table summarizes convergence rates as presented in

[Bubeck, 2014]. 150

15

A.2 Mirror Descent and its variants. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is

𝜅-strongly convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) − min𝑥∈𝑋 𝜔(𝑥),

𝜂 is the learning rate. For saddle point problems, 𝑍 = 𝑋 × 𝑌 , 𝜔(𝑧) =

𝑎𝜔𝑋(𝑥) + 𝑏𝜔𝑌 (𝑦), 𝑔(𝑡) = (𝑔𝑋,𝑡, 𝑔𝑌,𝑡), 𝑔𝑋,𝑡 = 𝜕𝑥𝜑(𝑥𝑡, 𝑦𝑡), 𝑔𝑌,𝑡 ∈ 𝜕𝑦(−𝜑(𝑥𝑡, 𝑦𝑡)).

𝜂𝑠𝑝𝑚𝑝 = 1/(2max(𝛽11𝑅
2
𝑋 , 𝛽22𝑅

2
𝑌 , 𝛽12𝑅𝑋𝑅𝑌 , 𝛽21𝑅𝑋𝑅𝑌)). This table summa-

rizes convergence rates as presented in [Bubeck, 2014]. 151

A.3 Mirror Descent and relatives. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is 𝜅-

strongly convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥)−min𝑥∈𝑋 𝜔(𝑥), 𝜂 is

the learning rate. This table summarizes convergence rates as presented in

[Bubeck, 2014]. 152

16

To my grandparents

asato ma sad gamaya

tamaso ma jyotir gamaya

From delusion lead me to truth

From ignorance lead me to knowledge

–Brhadaranyaka Upanisad, I.iii.28

17

18

Chapter 1

Introduction

“Facebook defines who we are, Amazon defines what we want,
Google defines what we think.”

- George Dyson, Turing’s Cathedral.

Algorithms shape almost all aspects of modern life - search, social media, news, e-

commerce, finance and urban transportation, to name a few. At the heart of most algorithms

today is an optimization engine trying to provide the best feasible solution with the infor-

mation observed thus far in time. For instance, a recommendation engine repetitively shows

a list of items to incoming customers, observes which items they clicked on, and updates the

list by placing the more popular items higher for subsequent customers. A routing engine

suggests routes that have historically had the least amount of network congestion, observes

the congestion on the selected route, and updates its recommendation for subsequent users.

What makes this optimization with partial information even more challenging is the effect

of competition from other algorithms on users or shared resources. For instance, two search

engines, like Google and Bing, might compete for the same set of users and try to attract

them with appropriate page rankings.

The space of feasible solutions that these algorithms have to operate within, needs to

respect various combinatorial constraints. For instance, when displaying a list of 𝑛 objects

each object must have a unique position from {1, . . . , 𝑛} or when selecting roads in a network

they must link to form a path from the specified origin of request to its destination. This

inherent combinatorial structure in the feasible solutions often results in certain computa-

19

tional bottlenecks. In this thesis, we consider three fundamental questions over combinatorial

polytopes that help in improving these bottlenecks that arise in various algorithms across

convex optimization, game theory and online learning due to the combinatorial nature of the

feasible solution set. The first is concerned with how to minimize a separable strictly convex

function over submodular polytopes (in Section 1.1), the second is regarding the complexity

of the parametric line search problem over extended submodular polyhedra (in Section 1.2),

and the third is dealing with the implication of efficient generalized approximate counting

over convex optimization and online learning (in Section 1.3). Finally, we give an overview

of our results in terms of applications to two-player games and online learning in Section 1.4

and a roadmap of the thesis in Section 1.5.

1.1 Separable convex minimization

In Chapter 3, we consider the fundamental problem of minimizing separable strictly convex

functions over submodular polytopes. This problem is motivated by first-order optimization

methods that only assume access to a first order oracle: in the case of minimizing a function

ℎ(·), a first order oracle reports the value of ℎ(𝑥) and a sub-gradient in 𝜕ℎ(𝑥) when queried

at any given point 𝑥. An important class of first-order methods is projection-based: they

require to minimize a (often) separable convex function over the set of feasible solutions. This

minimization is referred to as a projection and it is usually the computational bottleneck in

these methods whenever the feasible set is constrained. In spite of this bottleneck, projection-

based first-order methods often have near-optimal convergence guarantees, thus motivating

our search for efficient algorithms to minimize separable convex functions.

To make this more tangible, let us consider a projection-based first-order method, called

mirror descent, that can be used for minimizing a convex function, ℎ(·), over a convex set

𝑃 . Mirror descent is based on a strongly-convex1 function 𝜔(·), known as the mirror map.

Let us consider 𝜔(𝑥) = 1
2
‖𝑥‖2 as an example. Then, the iterations of the mirror descent

1ℎ : 𝑋 → R is 𝜅-strongly convex w.r.t. ‖ · ‖ if ℎ(𝑥) ≥ ℎ(𝑦) + 𝑔𝑇 (𝑥− 𝑦) + 𝜅
2 ‖𝑥− 𝑦‖2,∀𝑥, 𝑦 ∈ 𝑋, 𝑔 ∈ 𝜕ℎ(𝑥).

20

algorithm are as follows,

𝑥(0) = argmin
𝑥∈𝑃

𝜔(𝑥) = argmin
𝑥∈𝑃

1

2
‖𝑥‖2,

and for each 𝑡 ≥ 1:

𝑥(𝑡) = min
𝑥∈𝑃

𝐷𝜔(𝑥, 𝑦), where 𝑦 = (∇𝜔)−1(∇𝜔(𝑥(𝑡−1))− 𝜂∇𝑔(𝑥(𝑡−1))), (1.1)

= min
𝑥∈𝑃
‖𝑥− (𝑥(𝑡−1) − 𝜂∇𝑔(𝑥(𝑡−1)))‖2. (1.2)

Here, 𝐷𝜔(𝑥, 𝑦) = 𝜔(𝑥) − 𝜔(𝑦) − ∇𝜔(𝑦)𝑇 (𝑥 − 𝑦) is a convex metric called the Bregman

divergence of the mirror map 𝜔, and 𝜂 is a pre-defined step-size. For 𝜔(𝑥) = 1
2
‖𝑥‖2, ∇𝜔(𝑥) =

𝑥 and 𝐷𝜔(𝑥, 𝑦) =
1
2
‖𝑥− 𝑦‖2, resulting in the simplified gradient-descent step2 (1.2). As the

algorithm progresses, 𝑥(𝑡) approaches the argmin𝑥∈𝑃 𝑔(𝑥). Note that mirror descent requires

only the computation of the gradient of 𝑔(·) at a given point 𝑥(𝑡−1), along with a separable

convex minimization over 𝑃 (independent of the global properties of the function 𝑔(·)). The

rate of convergence of mirror descent depends on the choice of the mirror map 𝜔(·), the

convex set 𝑃 , and the convexity constants of 𝑔(·). We are concerned with computing (1.1)

efficiently, for a broad range of mirror maps 𝜔(·) and convex sets 𝑃 .

In order to capture a large variety of combinatorial structures, we consider the class

of submodular polytopes. Submodularity is a discrete analogue of convexity and naturally

occurs in several real-world applications ranging from clustering, experimental design, sensor

placement to structured regression. Submodularity captures the property of diminishing

returns: given a ground set of elements 𝐸 (𝑛 = |𝐸|), each subset 𝑆 of 𝐸 is associated with

a value 𝑓(𝑆) such that the increase in function value obtained by adding an element to a

smaller set is more than the increase in value obtained by adding to a larger set. To be

precise, submodular set functions 𝑓 : 2𝑛 → R satisfy the property

𝑓(𝑆 ∪ {𝑒})− 𝑓(𝑆) ≥ 𝑓(𝑇 ∪ {𝑒})− 𝑓(𝑇) for all 𝑆 ⊆ 𝑇, 𝑒 /∈ 𝑇. (1.3)

Given such a function 𝑓 , a submodular base polytope 𝐵(𝑓) = {𝑥 ∈ R𝑛
+ |

∑︀
𝑒∈𝐸 𝑥(𝑒) =

2Under 𝜔(𝑥) = 1
2‖𝑥‖

2, mirror descent is equivalent to the well-known gradient descent algorithm.

21

𝑓(𝐸),
∑︀

𝑒∈𝑆 𝑥(𝑒) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝐸} is the convex hull of combinatorial objects such as

spanning trees, permutations, k-experts, and so on [Edmonds, 1970]. In Chapter 3, we

consider the problem of minimizing separable strictly convex functions ℎ(·) over submodular

base polytopes 𝐵(𝑓) of non-negative submodular functions 𝑓(·), defined over a ground set

𝐸:

(P1) : min
𝑥∈𝐵(𝑓)

ℎ(𝑥) :=
∑︁
𝑒∈𝐸

ℎ𝑒(𝑥(𝑒)). (1.4)

We propose a novel algorithm, Inc-Fix, for solving problem (P1) by deriving it directly

from first-order optimality conditions. The algorithm is iterative and maintains a sequence

of points in the submodular polytope 𝑃 (𝑓) = {𝑥 ∈ R𝑛
+ |

∑︀
𝑒∈𝑆 𝑥(𝑒) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝐸}

while moving towards the base polytope 𝐵(𝑓), which is a face of 𝑃 (𝑓). Successive iterates

in the Inc-Fix algorithm are obtained by a greedy increase in the element values in the

gradient space. Note that a submodular set function 𝑓(·) requires an exponential input (one

value for each subset of 𝐸). Thus, to obtain meaningful guarantees of running time for

any algorithm on submodular polytopes, a natural assumption is to allow oracle access for

submodular function evaluation. Inc-Fix operates under the oracle model and uses known

submodular function minimization algorithms as subroutines. We show that Inc-Fix is an

exact algorithm under the assumption of infinite precision arithmetic, and its worst-case

running time requires 𝑂(𝑛) submodular function minimizations3. Note that this running

time does not depend on the convexity constants of ℎ(·).

When more information is known about the structure of the submodular function (as

opposed to only an oracle access to the function value), one can significantly speed up the

running time of Inc-Fix. We specifically consider cardinality-based submodular functions,

where the function value 𝑓(𝑆) only depends on the cardinality of set 𝑆 and not on the

choice of elements in 𝑆. Although simple in structure, base polytopes of cardinality-based

functions are still interesting and relevant, for instance, the probability simplex is obtained

by setting 𝑓(𝑆) = 1 for all subsets 𝑆 and the convex hull of permutations is obtained by

setting 𝑓(𝑆) =
∑︀|𝑆|

𝑠=1(𝑛− 1 + 𝑠) for all 𝑆 ⊆ 𝐸. For minimizing Bregman divergences arising
3Each submodular function minimization also requires the computation of the maximal minimizer, we

will make these details clearer in Chapter 3.

22

from uniform mirror maps 𝜔(𝑥) =
∑︀

𝑒𝑤(𝑥𝑒), onto cardinality-based submodular polytopes,

we give the fastest-known running time of 𝑂(𝑛(log 𝑛+ 𝑑)), where 𝑑 (𝑑 ≤ 𝑛) is the number of

unique submodular function values. This subsumes some of the recent results of Yasutake et

al. [Yasutake et al., 2011], Suehiro et al. [Suehiro et al., 2012] and Krichene et al. [Krichene

et al., 2015].

1.2 Parametric line search

In Chapter 4, we consider the parametric line search problem in the extended submodular

polytope 𝐸𝑃 (𝑓) = {𝑥 | 𝑥(𝑆) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝐸}, that computes how far one can move in

𝐸𝑃 (𝑓) starting from 𝑥0 ∈ 𝐸𝑃 (𝑓), along the direction 𝑎 ∈ R𝑛:

(P2): given 𝑎 ∈ R𝑛, 𝑥0 ∈ 𝐸𝑃 (𝑓), compute max{𝛿 | 𝑥0 + 𝛿𝑎 ∈ 𝐸𝑃 (𝑓)}. (1.5)

In this chapter, we do not impose a non-negativity condition on the submodular function

𝑓(·). The parametric line search is a basic subproblem needed in many algorithmic applica-

tions. For example, in the above-mentioned Inc-Fix algorithm, the required subproblem of

a parametric increase on the value of elements in the gradient space is equivalent to para-

metric line searches when minimizing squared Euclidean distance or KL-divergence. The

Carathéodory’s theorem states that given any point in a polytope 𝐾 ⊆ R𝑛, it can be ex-

pressed as a convex combination of at most 𝑛+ 1 vertices of 𝐾. For the algorithmic version

of Carathéodory’s theorem, one typically performs a line search from a vertex of the face

being considered in a direction within the same face. Line searches also arise as subproblems

in various variants of the Frank-Wolfe algorithm (for instance, see Algorithm 2 in [Freund

et al., 2015]) that is used for convex minimization over convex sets that admit efficient linear

optimization. Since computing the maximum movement along a direction 𝑎 ∈ R𝑛 while

being feasible in 𝐸𝑃 (𝑓) entails solving min{𝑆|𝑎(𝑆)>0}
𝑓(𝑆)
𝑎(𝑆)

, line searches are closely related to

minimum-ratio problems (for e.g. [Cunningham, 1985b]).

One of the most natural approaches for performing a line search is the cutting-plane

based approach of the discrete Newton’s algorithm: repeatedly generate the most violated

23

inequality starting from a point on the line outside the polytope and subsequently consider

next the point where the line intersects this hyperplane. This method would terminate

for any polytope that admits an efficient way of generating the most violated hyperplane.

Surprisingly, for extended submodular polytopes no bound on the number of iterations was

known for the case of an arbitrary line direction, while the nonnegative case has been well

understood (the Inc-Fix algorithm requires movement along nonnegative directions only).

In Chapter 4, we provide a quadratic bound on the number of iterations of the discrete

Newton’s algorithm to solve the general line search problem. The only other strongly-

polynomial method known that can be used to compute line searches prior to our work uti-

lized Megiddo’s parametric search framework [Nagano, 2007c]. In this framework, values of

all the elements are maintained as linear expressions of the parametric variable 𝛿, and a fully-

combinatorial4 submodular function minimization algorithm is used to find maximum 𝛿 such

that the minimum of the submodular function 𝑓−𝑥0−𝛿𝑎 is still zero (a submodular function

plus a linear function is still submodular). Each comparison in the fully-combinatorial SFM

algorithm requires another submodular function minimization (SFM). The fastest known

fully-combinatorial algorithm for SFM is that of [Iwata and Orlin, 2009] that requires 𝑂̃(𝑛8)

fully-combinatorial operations. Thus, such a parametric search framework requires 𝑂̃(𝑛8)

SFMs to perform line searches.

As a byproduct of our study, we prove (tight) bounds on the length of certain chains of

ring families5 and geometrically increasing sequences of sets. We first show a tight (quadratic)

bound on the length of a sequence 𝑇1, · · · , 𝑇𝑘 of sets such that no set in the sequence belongs

to the smallest ring family generated by the previous sets. One of the key ideas in the proof

of the quadratic bound is to consider a sequence of sets (each set corresponds to an iteration

in the discrete Newton’s method) such that the value of a submodular function on these sets

increases geometrically (to be precise, by a factor of 4). We show a quadratic bound on the

length of such sequences for any submodular function and construct two examples to show

that this bound is tight. These results might be of independent interest.

4An algorithm is called fully-combinatorial if it requires to compute only the fundamental operations of
additions, subtractions and comparisons.

5A ring family ℛ is a family of sets closed under taking unions and intersections.

24

1.3 Generalized approximate counting

In Chapter 5, we consider a popular online learning algorithm, the multiplicative weights

update method, and ask how it can be used to learn over combinatorial strategies and

for efficient convex minimization. Online learning is a sequential framework of decision-

making under partial information. A decision or a feasible solution is selected (for example,

which products to display to a user, given that we do not know their preferences), using

knowledge of previous outcomes (some similar users clicked on product A more than B), as

that knowledge is acquired. Contrary to machine learning models, where one sees all the

data, fits a model to it, and uses the model to find future decisions or solutions, in online

learning the data arrives sequentially, for each data point 𝑥𝑡 a decision is selected, and then

the model is updated after observing feedback due to 𝑥𝑡. The online learning framework also

does not require any assumptions on how the data is generated (as opposed to statistical

learning models).

Multiplicative weights update algorithm (MWU) is one of the most intuitive online learn-

ing methods (and has been discovered in game theory, machine learning and optimization

independently under various names) [Arora et al., 2012]. It maintains a probability distribu-

tion over the set of decisions and samples a decision according to this probability distribution.

For each decision that incurs a loss (in some metric), the probability is reduced by a multi-

plicative factor, and for each decision that incurs a gain its probability is increased by the

same factor. Repeating this process over time, one can show that the MWU algorithm is

competitive with respect to a fixed decision in hindsight (when all the losses and gains are

known at some point in the future) even though this fixed decision may not be known a

priori. Intuitively, this algorithm works because higher paying decisions are sampled with a

higher probability in the long run.

We are interested in online learning over combinatorial decisions. However, the running

time of each iteration of the MWU algorithm over 𝑁 decisions is 𝑂(𝑁) due to the updates

required on the probabilities of each strategy. Note that the number of combinatorial strate-

gies is typically exponential in the input parameters of the problem, for instance, the number

of spanning trees of a complete graph with a vertex set of size |𝑉 | is |𝑉 |(|𝑉 |−2) (Cayley’s The-

25

orem). However, we would like to simulate the MWU algorithm in time polynomial in the

input size of the problem, i.e. |𝑉 |. In Chapter 5, we first consider the question of

(P3.1): Under what conditions, can the MWU algorithm be simulated in logarithmic time in

the number of combinatorial strategies?

We develop a general framework for simulating the MWU algorithm over the set of

vertices 𝒰 of a 0/1 polytope 𝑃 efficiently by updating product distributions. A product

distribution 𝑝 over 𝒰 ⊆ {0, 1}𝑚 is such that 𝑝(𝑢) ∝
∏︀

𝑒:𝑢(𝑒)=1 𝜆(𝑒) for some multiplier vector

𝜆 ∈ R𝑚
+ . Product distributions allow us to maintain a distribution on (the exponentially

sized) 𝒰 by simply maintaining 𝜆 ∈ R𝑚
+ . We show that whenever there is an efficient

generalized (approximate) counting oracle which, given 𝜆 ∈ R𝑚
+ , (approximately) computes∑︀

𝑢∈𝒰
∏︀

𝑒:𝑢𝑒=1 𝜆(𝑒) and also, for any element 𝑠, computes
∑︀

𝑢∈𝒰 :𝑢𝑠=1

∏︀
𝑒:𝑢𝑒=1 𝜆(𝑒) allowing the

derivation of the corresponding marginals 𝑥 ∈ 𝑃 , then the MWU algorithm can be efficiently

simulated to learn over combinatorial sets 𝒰 . This generalizes known results for learning over

spanning trees [Koo et al., 2007] where a generalized exact counting oracle is available using

the matrix tree theorem, and bipartite matchings [Koolen et al., 2010] where a randomized

approximate counting oracle can be used [Jerrum et al., 2004].

Recall that in Section 1.1, we discussed briefly the first-order optimization method, mir-

ror descent, which is based on a strongly-convex function known as the mirror map. Online

mirror descent is an online variant of the offline version where the (sub)gradients are gen-

erated externally (by the environment, users or adversary) and the updates are similar to

those of the mirror descent algorithm. As we noticed in (1.2), selecting the mirror map

𝜔(𝑥) = 1
2
‖𝑥‖2, shows that the gradient descent method is a special case of the mirror descent

algorithm. Similarly, it is known that selecting 𝜔(𝑥) =
∑︀

(𝑥𝑒 ln(𝑥𝑒/𝑦𝑒)− 𝑥𝑒 + 𝑦𝑒) to perform

convex minimization over an 𝑑-dimensional simplex results in the multiplicative weights up-

date algorithm over 𝑑 strategies [Beck and Teboulle, 2003]. Given a polytope 𝑃 ∈ R𝑛, one

can consider the space of (an exponential number) the vertex set 𝒰 , and probability dis-

tributions over 𝒰 . The representation of the polytope changes (now it uses an exponential

number of variables), however, the above-mentioned approximate counting oracles give a

way of computing projections efficiently (these correspond to computing the normalization

26

constant of the probability distribution). We next ask the following question:

(P3.2): What are the implications of being able to compute projections efficiently in a

different representation of the polytope?

By moving to a large space with an exponential number of dimensions, we see that it

is straightforward to compute projections (via approximate counting). This is reminiscent

of the theory of extended formulations, where polynomial number of variables are added to

a formulation with the hope of reducing the number of facets of the raised polytope (and

thereby improve the running time of linear optimization). With this point of view, we show

that convex functions over the marginals of a polytope 𝑃 can be minimized efficiently by

moving to the space of vertices and exploiting approximate counting oracles. Note that

this results holds irrespective of the convex function being separable or not (recall that in

Chapter 3 we minimize separable convex functions). This leads to interesting connections

and questions about different representations of combinatorial polytopes, while drawing a

connection to approximate counting and sampling results from the theoretical computer

science literature. As a corollary, we show that using the MWU algorithm we can decompose

any point in a 0/1 polytope 𝑃 into a product distribution over the vertex set of 𝑃 .

1.4 Nash-equilibria in two-player games

In Chapter 6, we discuss the above-mentioned results in the context of finding optimal strate-

gies (Nash-equilibria) for two-player zero-sum games, as well as prove structural properties

of equilibria that help in computing these using convex minimization. Two-player zero-sum

games (or more generally saddle point problems) allow us to mathematical model many in-

teresting scenarios involving interdiction, competition, robustness, etc. We are interested in

games where each player plays a combinatorial strategy6, and the loss of one player can be

modeled as a bilinear function of their strategies (the loss of the other player is negative the

loss of the former player). As an example, consider a spanning tree game in which most of

the results of the thesis will apply, pure strategies correspond to spanning trees 𝑇1 and 𝑇2

6We consider simultaneous-move and single round games. Note that the number of pure strategies for
each player is then exponential in the input of the game.

27

selected by the two players in a given graph 𝐺. We can model intersection losses as bilinear

functions: whenever their strategies 𝑇1 and 𝑇2 intersect at an edge, there is a payoff from

one player to the other, i.e. say the first (row) player looses
∑︀

𝑒∈𝑇1∩𝑇2
𝐿𝑒 to the other player.

Selecting 𝐿𝑒 > 0 can be used to model an interdiction scenario where the first player is

trying to avoid detection (by minimizing the intersection 𝑇1 ∩ 𝑇2), while the other player is

trying to maximize detection (by maximizing the intersection). Another example is that of

dueling search engines, as described in a paper by Immorlica et al. [Immorlica et al., 2011].

Suppose two search engines 𝐴 and 𝐵 would like to select an ordering of webpages to display

to a set of users, where both the search engines know a distribution 𝑝 over the webpages

𝑖 ∈ ℐ such that 𝑝(𝑖) is the fraction of users looking for a page 𝑖. Consider a scenario in

which the users prefer the search engine that displays the page they are looking for earlier in

the ordering. Note that if a search engine displays a greedy ordering 𝐺𝑟 = (1, 2, 3, . . . , |ℐ|)

where 𝑝(𝑖) ≥ 𝑝(𝑗) for 𝑖 < 𝑗 (which is optimal if the goal is to maximize relevance of results

given 𝑝), then the other search engine can attract 1−𝑝(1) fraction of the users by displaying

a modified ordering 𝐺′
𝑟 = (2, 3, . . . , |ℐ|, 1). This competitive scenario between two search

engines can again be modeled as a two-player zero-sum game, where each player plays a

bipartite matching (vertices corresponding to pages are matched to vertices corresponding

to the position in the ordering) with a bilinear loss function7.

In Chapter 6, we first discuss the well-known von Neumann linear program to find Nash-

equilibria8 for the above-mentioned two-player zero-sum games. Under bilinear loss func-

tions, the von Neumann linear program has a compact form, and this can be solved using

the ellipsoid algorithm. Next, any online learning algorithm can be used to converge to

Nash-equilibria for two-player zero-sum games, a well-studied connection that we discuss

in this chapter. This allows us to make use of either online mirror descent (along with

the computation of Bregman projections, as discussed in Chapter 3) or the multiplicative

weights update (along with approximate generalized counting oracles, as discussed in Chap-

ter 5). We discuss the convergence rates to approximate Nash-equilibria in the case of a

7To obtain a bilinear loss function, one must use the representation of bipartite matchings using doubly
stochastic matrices.

8A pair of strategies such that neither player has an incentive to deviate from their strategy if the other
player commits to his/her strategy.

28

spanning tree game as all the results apply to this case, using entropic mirror descent, gradi-

ent descent and the multiplicative weights update algorithm. We further discuss limitations

of these approaches in the context of the results presented in this thesis, for instance, our

projection algorithms would not work for bipartite matchings (although one could use the

ellipsoid algorithm). Finally, we show certain structural results that hold for (symmetric)

Nash-equilibria of two-player zero-sum matroid games9 (where each player plays bases10 of

the same matroid). These results enable us to find equilibria using a single separable convex

minimization under some conditions over the loss matrix.

1.5 Roadmap of thesis

This thesis is organized as follows. In Chapter 2, we discuss some background for the

problems and related work for the above mentioned questions.

In Chapter 3, we consider the problem of separable convex minimization over submodular

base polytopes. We give our algorithm, Inc-Fix, for minimizing separable convex functions

over these base polytopes (Section 3.1). We show that the Inc-Fix computes exact projec-

tions and prove correctness of our algorithm in Section 3.2. We next show equivalence of

various convex problems (Section 3.2.1), as well as discuss a natural way to round interme-

diate iterates to the base polytope (Section 3.2.2). In Section 3.3, we discuss two ways of

implementing the Inc-Fix method using either 𝑂(𝑛) parametric line searches (Section 3.3.1)

or 𝑂(𝑛) submodular function minimizations (Section 3.3.2). Further, we develop a variant of

the Inc-Fix algorithm, called Card-Inc-Fix, that works in nearly linear to quadratic time

for minimizing divergences arising from uniform separable mirror maps onto base polytopes

of cardinality-based functions (Section 3.4).

Next, in Chapter 4, we consider the problem of finding the maximum possible movement

along a direction while staying feasible in the extended submodular polytope. In Section 4.1,

we review some background related to ring families and Birkhoff’s representation theorem,

as well as a key result on the length of a certain sequence of sets that is restricted due to

9Matroids abstract and generalize the notion of linear independence in vector spaces.
10These are the maximal independent sets in a matroid. For example, spanning trees of a given graph are

the bases of the graphic matroid.

29

the structure of ring families. This result plays an important part in proving the main result

in this chapter. We next show a cubic bound on the number of iterations of the discrete

Newton’s algorithm, in Section 4.2.1, and the stronger quadratic bound (Theorem 11, in

Section 4.2.2). One of the key ideas in the proof for Theorem 11 is to consider a sequence

of sets (each set corresponds to an iteration in the discrete Newton’s method) such that

the value of a submodular function on these sets increases geometrically (to be precise, by a

factor of 4). We show a quadratic bound on the length of such sequences for any submodular

function and construct two examples to show that this bound is tight, in Section 4.3.

Chapter 5 concerns with a general recipe for simulating the multiplicative weights update

algorithm in polynomial time (logarithmic in the number of combinatorial strategies) (in

Section 5.1). We show how this framework can be used to compute convex minimizers over

combinatorial polytopes that admit efficient approximate counting oracles over their vertex

set (Section 5.2). As a byproduct of this result, we show that the MWU algorithm can be

used to decompose any point in a 0/1 polytope (that admits approximate counting) into a

product distribution over the vertex set.

In Chapter 6, we view the above discussed results in the context of finding Nash-equilibria

for two-player zero-sum games where each player plays a combinatorial strategy and the

losses are bilinear in the two strategies. After reviewing the ellipsoid algorithm for solving

the von Neumann linear program for finding Nash-equilibria (Section 6.1), we show that on

one hand, the mirror descent algorithm can be used in conjunction with projections over

submodular polyhedra, and on the other hand, the multiplicative weights update algorithm

can be used in conjunction with approximate counting oracles (Section 6.2). We also show

that symmetric Nash-equilibria for certain games can be computed by minimizing a single

separable convex function (Section 6.3).

Finally, in Chapter 7, we summarize the results in this thesis and discuss research di-

rections that emerge out of this work. We survey important projection-based first-order

optimization methods in Appendix A and include some examples of Nash-equilibria of the

spanning tree game under identity loss matrices in Appendix B.

30

Chapter 2

Background

“If I have seen further, it is by standing on the shoulders of giants.”
- Isaac Newton.

We present in this chapter the notation used throughout the thesis, some useful refer-

ences for certain theoretical concepts and machinery required to understand the results (in

Sections 2.1 and 2.2). None of the theorems discussed in this chapter are our own. We give

attributions in almost all cases, unless the results have been known in the community as

folklore results. Our development of the background material is in no way comprehensive.

We give most attention to the results required in the subsequent chapters. Further we also

discuss important related work pertaining to the results in each chapter in Section 2.3.

2.1 Notation

We first discuss the notation used in this thesis. We use R𝑛
+ to denote the space of vectors

in 𝑛-dimensions that are non-negative in each coordinate and R𝑛
>0 is the space of vectors

that are positive (non-zero) in each coordinate. In Chapter 3, we minimize differentiable

separable convex functions ℎ(·) and we refer to their gradients as ∇ℎ. Throughout the

thesis, we focus on combinatorial strategies that are a selection of elements of a ground

set 𝐸, for instance, given a graph 𝐺 = (𝑉,𝐸) the ground set 𝐸 is the set of edges and

combinatorial strategies are spanning trees, matchings, paths, etc. We let the cardinality

31

of the ground set be |𝐸| = 𝑛. We will often represent these combinatorial strategies by

𝑛-dimensional 0/1 vectors and use the shorthand 𝑒 ∈ 𝑢 to imply 𝑒 : 𝑢(𝑒) = 1 for any 0/1

vector 𝑢. We use R|𝐸| and R𝐸 interchangeably. For a vector 𝑥 ∈ R𝐸, we use the shorthand

𝑥(𝑆) for
∑︀

𝑒∈𝑆 𝑥(𝑒). For readability, we use 𝑥(𝑒) and 𝑥𝑒 interchangeably. To represent a

vector of ones, we use 1 (when the dimension is clear from context) or 𝜒(𝐸) (to specify the

dimension to be |𝐸|). By argmin𝑥∈𝑃 ℎ(𝑥), we mean the set of all minimizers of ℎ(·) over

𝑥 ∈ 𝑃 . This set is just the unique minimizer when ℎ(·) is a strictly convex function.

2.2 Background

We next discuss some important concepts and theorems required to understand the results

of this thesis. In Chapters 3, 4 and 6, we work with submodular polyhedra and review some

important concepts related to submodularity in Section 2.2.1. As a motivation for consid-

ering the bottleneck of computing projections (i.e. convex minimization) over submodular

polytopes, we often refer to projection-based first-order methods like the mirror descent

and its variants. We discuss these in Section 2.2.2, along another first-order optimization

method, Frank-Wolfe, that does not require projections. Chapter 5 deals predominantly

with an online learning algorithm and its usefulness in online linear optimization and convex

optimization. We therefore discuss some background on the online learning framework in

Section 2.2.3.

2.2.1 Submodular functions and their minimization

Submodularity is a discrete analogue of convexity and is a property often used to handle

combinatorial structure. Given a ground set 𝐸 (𝑛 = |𝐸|) of elements, for e.g., the edge set

of a given graph, columns of a given matrix, objects to be ranked, a set function 𝑓 : 2𝑛 → R

is said to be submodular if

𝑓(𝐴) + 𝑓(𝐵) ≥ 𝑓(𝐴 ∪𝐵) + 𝑓(𝐴 ∩𝐵), (2.1)

32

for all 𝐴,𝐵 ⊆ 𝐸. Another way of defining submodular set functions is by using the property

of diminishing returns, i.e. adding an element to a smaller set results in a greater increase

in the function value compared to adding an element to a bigger set. More precisely, a set

function 𝑓 is said to be submodular if

𝑓({𝑒} ∪ 𝑇)− 𝑓(𝑇) ≤ 𝑓(𝑆 ∪ {𝑒})− 𝑓(𝑆), (2.2)

for every 𝑆 ⊆ 𝑇 ⊆ 𝐸 and 𝑒 /∈ 𝑇 . The latter characterization is at times easier to verify than

the sum of the function value over the intersection and unions of subsets, as in (2.1).

We can assume without loss of generality that 𝑓 is normalized such that 𝑓(∅) = 0

(suppose it is not, then one can consider 𝑓 ′ = 𝑓 − 𝑓(∅) instead). Given such a function

𝑓 , the submodular polytope (or independent set polytope) is defined as 𝑃 (𝑓) = {𝑥 ∈ R𝑛
+ :

𝑥(𝑈) ≤ 𝑓(𝑈) ∀ 𝑈 ⊆ 𝐸}, the extended submodular polytope (or the extended polymatroid)

as 𝐸𝑃 (𝑓) = {𝑥 ∈ R𝑛 : 𝑥(𝑈) ≤ 𝑓(𝑈) ∀ 𝑈 ⊆ 𝐸}, the base polytope as 𝐵(𝑓) = {𝑥 ∈ 𝑃 (𝑓) |

𝑥(𝐸) = 𝑓(𝐸)} and the extended base polytope as 𝐵ext(𝑓) = {𝑥 ∈ 𝐸𝑃 (𝑓) | 𝑥(𝐸) = 𝑓(𝐸)}

[Edmonds, 1970]. The vertices of these base polytopes are often the combinatorial strategies

that we care about, for instance, spanning trees, permutations of the ground set, etc. We

list in Table 2.1 some interesting examples of base polytopes of submodular functions.

Combinatorial strategies represented
by vertices of 𝐵(𝑓)

Submodular function 𝑓 , 𝑆 ⊆ 𝐸 (unless
specified)

One out of 𝑛 elements, 𝐸 = {1, . . . , 𝑛} 𝑓(𝑆) = 1
Subsets of size 𝑘, 𝐸 = {1, . . . , 𝑛} 𝑓(𝑆) = min{|𝑆|, 𝑘}
Permutations over 𝐸 = {1, . . . , 𝑛} 𝑓(𝑆) =

∑︀|𝑆|
𝑠=1(𝑛+ 1− 𝑠)

k-truncated permutations over 𝐸 =
{1, . . . , 𝑛}

𝑓(𝑆) = (𝑛 − 𝑘)|𝑆| for |𝑆| ≤ 𝑘, 𝑓(𝑆) =

𝑘(𝑛− 𝑘) +
∑︀|𝑆|

𝑠=𝑘+1(𝑛+ 1− 𝑠) if |𝑆| ≥ 𝑘

Spanning trees on 𝐺 = (𝑉,𝐸) 𝑓(𝑆) = |𝑉 (𝑆)| − 𝜅(𝑆), 𝜅(𝑆) is the number
of connected components of 𝑆

Bases of matroids 𝑀 = (𝐸, ℐ) over ground
set 𝐸, ℐ ⊆ 2𝐸

𝑓(𝑆) = 𝑟𝑀 (𝑆), the rank function of the
matroid

Table 2.1: Examples of common base polytopes and the submodular functions (on ground set of
elements 𝐸) that give rise to them.

Given a vector 𝑥 ∈ 𝐸𝑃 (𝑓) (or 𝑥 ∈ 𝑃 (𝑓)), a subset 𝑆 ⊆ 𝐸 is said to be tight if 𝑥(𝑆) =

𝑓(𝑆). If the value of any element 𝑒 in a tight set 𝑆 is increased by some 𝜖 > 0, then 𝑥+ 𝜖𝜒(𝑒)

would violate the submodular constraint corresponding to the set 𝑆. We refer to the maximal

33

subset of tight elements in 𝑥 as 𝑇 (𝑥). This is unique by submodularity of 𝑓 , as is clear from

the following lemma.

Lemma 2.1 ([Schrijver, 2003], Theorem 44.2). Let 𝑓 be a submodular set function on 𝐸,

and let 𝑥 ∈ 𝐸𝑃 (𝑓). Then the collections of sets 𝑆 ⊆ 𝐸 satisfying 𝑥(𝑆) = 𝑓(𝑆) is closed

under taking intersections and unions.

Proof. Suppose 𝑆, 𝑇 are tight sets with respect to 𝑥 ∈ 𝐸𝑃 (𝑓). Note that 𝑥(𝑆∪𝑇)+𝑥(𝑆∩𝑇) =

𝑥(𝑆)+ 𝑥(𝑇)
(1)
= 𝑓(𝑆)+ 𝑓(𝑇) ≥(2) 𝑓(𝑆 ∪𝑇)+ 𝑓(𝑆 ∩𝑇), where (1) follows from 𝑆 and 𝑇 being

tight and (2) follows from submodularity of 𝑓 . Since 𝑥 ∈ 𝐸𝑃 (𝑓), 𝑥(𝑆 ∩ 𝑇) ≤ 𝑓(𝑆 ∩ 𝑇) and

𝑥(𝑆 ∪ 𝑇) ≤ 𝑓(𝑆 ∪ 𝑇), which in turn imply that 𝑆 ∪ 𝑇 and 𝑆 ∩ 𝑇 are also tight with respect

to 𝑥.

The above lemma implies that the union of all tight sets with respect to 𝑥 ∈ 𝐸𝑃 (𝑓) is

also tight, and hence it is the unique maximal tight set 𝑇 (𝑥).

We next discuss two operations, contractions and restrictions, that preserve submodu-

larity of submodular set systems. This will be useful when we perform certain parametric

gradient searches in Chapter 3 to implement the Inc-Fix algorithm. For a submodular

function 𝑓 on 𝐸 with 𝑓(∅) = 0, the pair (𝐸, 𝑓) is called a submodular set system.

Definition 1. For any 𝐴 ⊆ 𝐸, a restriction of 𝑓 by 𝐴 is given by the submodular function

𝑓𝐴(𝑆) = 𝑓(𝑆) for 𝑆 ⊆ 𝐴.

In the case of a restriction 𝑓𝐴, the ground set of elements is restricted to 𝐴, i.e. 𝐸𝐴 = 𝐴.

It is easy to see that (𝐸𝐴, 𝑓𝐴) is also a submodular set system.

Definition 2. For any 𝐴 ⊆ 𝐸, a contraction of 𝑓 by 𝐴 is given by the submodular function

𝑓𝐴(𝑆) = 𝑓(𝐴 ∪ 𝑆)− 𝑓(𝐴) for all 𝑆 ⊇ 𝐴.

In the case of a contraction 𝑓𝐴, the ground set of elements is 𝐸𝐴 = 𝐸 − 𝐴. To check

that (𝐸𝐴, 𝑓𝐴) is a submodular set system, note that for any 𝑆, 𝑇 ⊆ 𝐸𝐴, 𝑓𝐴(𝑆) + 𝑓𝐴(𝑇) =

𝑓(𝑆 ∪𝐴) + 𝑓(𝑇 ∪𝐴)− 2𝑓(𝐴) ≥ 𝑓((𝑆 ∪ 𝑇)∪𝐴) + 𝑓((𝑆 ∩ 𝑇)∪𝐴)− 2𝑓(𝐴) by submodularity

of 𝑓 .

To specify a submodular function 𝑓 , we need the value of the function on every subset of

the ground set. Since the input size would then be exponential in the size of the ground set,

34

a natural model that helps in obtaining meaningful running time guarantees is to assume an

oracle access for the submodular function value. Edmonds [Edmonds, 1970] showed that one

can maximize any linear function 𝑤𝑇𝑥 over 𝑃 (𝑓) by using the greedy algorithm whenever 𝑓

is monotone and normalized.

Next, note that to check for feasibility of 𝑥 in the extended submodular polytope 𝐸𝑃 (𝑓),

one needs to verify that 𝑥(𝑆) ≤ 𝑓(𝑆) for all subsets 𝑆. This can be done by minimizing

the submodular function 𝑓 − 𝑥 over all the subsets. If the minimum is at least zero, then

𝑥 ∈ 𝐸𝑃 (𝑓) (if 𝑥 ∈ 𝐸𝑃 (𝑓) and 𝑥 ≥ 0 then 𝑥 ∈ 𝑃 (𝑓)). The first polynomial time algorithm

for submodular function minimization (SFM) was due to [Grötschel et al., 1981], and was

based on the ellipsoid method. Starting with the work of Cunningham [Cunningham, 1985a],

there have been many combinatorial algorithms for SFM, like [Schrijver, 2000], [Fleischer

and Iwata, 2003], [Orlin, 2009] and [Lee et al., 2015]. One of the crucial ingredient of these

algorithms is the following min-max theorem:

Theorem 1 ([Edmonds, 1970]). For a submodular function 𝑓 with 𝑓(∅) = 0, we have

min
𝑆⊆𝐸

𝑓(𝑆) = max
𝑥∈𝐵ext(𝑓)

𝑥−(𝐸),

where 𝑥−(𝐸) =
∑︀

𝑒|𝑥(𝑒)≤0 𝑥(𝑒).

These combinatorial algorithms maintain a certificate of optimality 𝑥 ∈ 𝐵ext(𝑓) such that

𝑥−(𝐸) = 𝑓(𝑊) for some 𝑊 ⊆ 𝐸. Existence of such 𝑥 ∈ 𝐵ext(𝑓) and 𝑊 proves that 𝑊 is a

minimizer of the submodular function 𝑓 using Edmonds’ min-max theorem. Since checking

for feasibility in a base polytope requires submodular function minimization itself, these

certificates are often maintained as a convex combination of bases, i.e. 𝑥 =
∑︀

𝑖 𝜆𝑖𝑣𝑖 where

𝑣𝑖 are vertices of 𝐵ext(𝑓) and
∑︀

𝑖 𝜆 = 1, 𝜆𝑖 ≥ 0. There are also some projected stochastic

subgradient descent based submodular function minimization algorithms (like [Chakrabarty

et al., 2016]) that exploit the properties of a certain Lovász extension of the submodular

function. The Lovász extension is a convex continuous extension of a submodular function

to the interior of the 𝑛-dimensional hypercube, and its approximate minimizers can be used

to approximate minimizers of the submodular function.

35

An important property of minimizers of submodular functions is that they form a dis-

tributive lattice with set union and intersection as the lattice operations.

Lemma 2.2. Suppose 𝑆 and 𝑇 are minimizers of a submodular function 𝑓 , 𝑆∩𝑇 and 𝑆∪𝑇

are also minimizers of 𝑓 .

Proof. This is easy to see since 𝑓(𝑆) + 𝑓(𝑇) ≥(1) 𝑓(𝑆 ∪ 𝑇) + 𝑓(𝑆 ∩ 𝑇) ≥(2) 𝑓(𝑆) + 𝑓(𝑇),

where (1) follows from submodularity of 𝑓 and (2) follows since 𝑆 and 𝑇 are minimizers of

𝑓 . Therefore, equality must hold throughout implying 𝑆 ∩ 𝑇 and 𝑆 ∪ 𝑇 are also minimizers

of 𝑓 .

The above lemma also implies that submodular functions have unique minimal and max-

imal minimizers. Next, we consider minimizing sequences of submodular functions that

satisfy the property of being strong maps.

Definition 3. A submodular function 𝑓 is said to be a strong quotient of another submodular

function 𝑓 if 𝑍 ⊆ 𝑌 implies

𝑓(𝑍)− 𝑓(𝑌) ≥ 𝑓(𝑍)− 𝑓(𝑌).

In other words, 𝑓 is a strong quotient of 𝑓 if 𝑓 − 𝑓 is monotone non-decreasing, and this

relation, denoted by 𝑓 → 𝑓 , is called a strong map. A fundamental property of any strong

map 𝑓 → 𝑓 is that the minimizers of 𝑓 and 𝑓 are related in the following sense:

Lemma 2.3 ([Iwata et al., 1997], [Topkis, 1978]). The minimal (maximal) minimizer of 𝑓

is contained in the minimal (maximal) minimizer of 𝑓 .

Proof. We will first show that if 𝑆 and 𝑇 are minimizers of 𝑓 and 𝑓 respectively, then 𝑆 ∩𝑇

and 𝑆 ∪ 𝑇 are also minimizers of 𝑓 and 𝑓 respectively.

𝑓(𝑆)− 𝑓(𝑆) ≥ 𝑓(𝑆 ∩ 𝑇)− 𝑓(𝑆 ∩ 𝑇) (2.3)

≥ 𝑓(𝑆)− 𝑓(𝑆 ∩ 𝑇) (2.4)

≥ 𝑓(𝑆) + 𝑓(𝑆 ∪ 𝑇)− 𝑓(𝑆)− 𝑓(𝑇) (2.5)

≥ 𝑓(𝑆)− 𝑓(𝑆), (2.6)

36

where (2.3) follows from monotonicity of 𝑓 − 𝑓 , (2.4) follows from 𝑆 being a minimizer of

𝑓(·), (2.5) follows from submodularity of 𝑓 and (2.6) follows from 𝑇 being a minimizer of 𝑓 .

Therefore, equality holds throughout and 𝑆∩𝑇 is indeed a minimizer of 𝑓 . One can similarly

show that 𝑆 ∪𝑇 is a minimizer of 𝑓 . Replacing 𝑆 by minimal (maximal) minimizer of 𝑓 and

𝑇 by minimal (maximal) minimizer of 𝑓 , we get that 𝑆 ∩ 𝑇 is a minimizer of 𝑓 (𝑆 ∪ 𝑇 is a

minimizer of 𝑓). Using Lemma 2.2 on the uniqueness of minimal and maximal minimizers

of submodular functions, we get the statement of the lemma.

A strong map sequence is a sequence of submodular functions (on the same ground set)

such that 𝑓1 → 𝑓2 → . . . → 𝑓𝑘. A parametric submodular function minimization entails

minimizing all the functions 𝑓𝑖 parametrized by 𝑖 ∈ 𝐾. When 𝑓𝑖, 𝑖 ∈ 𝐾 form a strong

map sequence (of length 𝑘), then combinatorial algorithms for SFM can be adapted to

perform a parametric submodular function minimization in the same worst-case running

time as that for a single SFM [Nagano, 2007a]. The key component of the analysis uses the

final combinatorial state (of the distance functions or orders) in the minimization of 𝑓𝑖 as

a starting state for the minimization of 𝑓𝑖+1. Strong map sequences were first formulated

in the paper by [Iwata et al., 1997], and have been used by [Fleischer and Iwata, 2003]

and [Nagano, 2007a] to achieve faster running times in the context of minimizing separable

convex functions.

We further refer the interested reader to [Fujishige, 2005] (for background on submodular

set systems), [Schrijver, 2003] (for background on submodular polyhedra and submodular

function minimization), [Iwata, 2008] (for a survey on algorithms for submodular function

minimization) and references therein.

2.2.2 First-order optimization methods

Before reviewing background on first-order optimization methods, we discuss some defini-

tions. Given an arbitrary norm ‖ · ‖ on R𝑛, its dual norm ‖ · ‖* is defined as ‖𝑢‖* =

sup{𝑢𝑇𝑥 | ‖𝑥‖ ≤ 1}. Let 𝑋 be a closed convex set. A function ℎ : 𝑋 → R is convex iff 𝜕ℎ(𝑥)

is non-empty for all 𝑥 ∈ 𝑋. If ℎ is differentiable at 𝑥 then 𝜕ℎ(𝑥) consists of a single vector

which amounts to the gradient of ℎ at 𝑥, and it is denoted by ∇ℎ(𝑥). A convex function

37

ℎ : 𝑋 → R is

(i) 𝐺-Lipschitz w.r.t. ‖ · ‖ if ∀𝑥 ∈ 𝑋, 𝑔 ∈ 𝜕ℎ(𝑥), ‖𝑔‖* ≤ 𝐺,

(ii) strictly convex if ℎ(𝜃𝑥 + (1 − 𝜃)𝑦) < 𝜃ℎ(𝑥) + (1 − 𝜃)ℎ(𝑦) for any 0 < 𝜃 < 1 and

𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦, or equivalently, ℎ(𝑥) > ℎ(𝑦) + 𝑔𝑇 (𝑥− 𝑦),∀𝑥, 𝑦 ∈ 𝑋, 𝑔 ∈ 𝜕ℎ(𝑥),

(iii) 𝜅-strongly convex w.r.t. ‖·‖ if ℎ(𝑥) ≥ ℎ(𝑦)+𝑔𝑇 (𝑥−𝑦)+ 𝜅
2
‖𝑥−𝑦‖2, ∀𝑥, 𝑦 ∈ 𝑋, 𝑔 ∈ 𝜕ℎ(𝑥),

and

(iv) 𝛽-smooth w.r.t. ‖ · ‖ if ‖∇ℎ(𝑥)−∇ℎ(𝑦)‖* ≤ 𝛽‖𝑥− 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑋.

First-order optimization methods for minimizing a convex function1, say ℎ(·) : 𝑋 → R𝑛,

rely on a black-box first-order oracle for ℎ, which only reports the value of ℎ(𝑥) and an

arbitrary sub-gradient 𝑔(𝑥) ∈ 𝜕ℎ(𝑥) given an input vector 𝑥 ∈ 𝑋.

We first discuss briefly the mirror descent algorithm [Nemirovski and Yudin, 1983] for

minimizing an arbitrary convex function ℎ(·) : 𝑋 → R that is 𝐺-Lipschitz on a closed convex

set 𝑋 with respect to ‖ ·‖. The presentation of the mirror descent algorithm is inspired from

[Bubeck, 2014]. The mirror descent algorithm is defined with the help of a strictly-convex

and differentiable function 𝜔 : 𝒟 → R, known as the mirror map, that is defined on a

convex set 𝒟 such that 𝑋 ⊆ 𝒟. A mirror map is required to satisfy additional properties

of divergence of the gradient on the boundary of 𝒟, i.e., lim𝑥→𝜕𝒟 ‖∇𝜔(𝑥)‖ =∞ (for details,

refer to [Bubeck, 2014]). The algorithm is iterative and it starts with the first iterate 𝑥(1) as

the 𝜔-center of 𝒟, given by 𝑥(1) = argmin𝑥∈𝑋∩𝒟 𝜔(𝑥). Subsequently, for 𝑡 > 1, the algorithm

first moves in an unconstrained way using

∇𝜔(𝑦(𝑡+1)) = ∇𝜔(𝑥(𝑡))− 𝜂𝑔𝑡, where 𝑔𝑡 ∈ 𝜕ℎ(𝑥(𝑡)). (2.7)

Then, the next iterate 𝑥(𝑡+1) is obtained by a projection step:

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1)), (2.8)

1In this section, we deviate from the notation of calling the domain of the convex function ℎ to be 𝒟 and
let the domain of function to be minimized be 𝑋, and reserve 𝒟 to be the domain of the mirror map.

38

where 𝐷𝜔(𝑥, 𝑦) = 𝜔(𝑥) − 𝜔(𝑦) − ∇𝜔(𝑦)𝑇 (𝑥 − 𝑦) is the Bregman divergence with respect

to 𝜔(·) [Bregman, 1967]. Note that the Bregman divergence need not be symmetric, i.e.

𝐷𝜔(𝑥, 𝑦) ̸= 𝐷𝜔(𝑦, 𝑥). Also, 𝐷𝜔(𝑥, 𝑦) ≥ 0 since 𝜔(·) is strictly-convex, and it is zero iff 𝑥 = 𝑦.

Further, it is convex in the first argument, as 𝜔(𝑥) is convex and ∇𝜔(𝑦)𝑇𝑥 is linear in 𝑥.

The Bregman divergence is in fact strictly-convex in 𝑥 given 𝑦, and therefore has a unique

minimizer over any convex set (the proof is straight-forward and follows from the strict-

convexity of the mirror map). Bregman divergences also satisfy the generalized Pythagorean

theorem,

𝐷𝜔(𝑢, 𝑥) ≥ 𝐷𝜔(𝑢,Π(𝑥)) +𝐷𝜔(Π(𝑥), 𝑥) ∀𝑢 ∈ 𝑋 ∩ 𝒟,

where Π(𝑥) = argmin𝑤∈𝑋∩𝒟 𝐷𝜔(𝑤, 𝑥) is the Bregman projection of 𝑥 onto 𝑋 ∩ 𝒟. This

property is useful in proving the convergence of the mirror descent algorithm. Note that

the partial derivative of the Bregman divergence with respect to 𝑥 is 𝜕𝑥𝐷𝜔(𝑥, 𝑦) = ∇𝜔(𝑥)−

∇𝜔(𝑦). Since we care about the divergences as a function of the first argument, we will

overload the notation ∇𝐷𝜔(𝑥, 𝑦) to mean 𝜕𝑥𝐷𝜔(𝑥, 𝑦).

Examples of two important mirror maps that we consider in this thesis are the Euclidean

mirror map and the unnormalized entropy mirror map. The Euclidean mirror map is given

by 𝜔(𝑥) = 1
2
‖𝑥‖2, for 𝒟 = R𝐸 and is 1-strongly convex with respect to the 𝐿2 norm. The un-

normalized entropy map is given by 𝜔(𝑥) =
∑︀

𝑒∈𝐸 𝑥(𝑒) ln(𝑥(𝑒))−
∑︀

𝑒∈𝐸 𝑥(𝑒), for 𝒟 = R𝐸
+ and

is known to be 1-strongly convex over the 𝑛-dimensional simplex with respect to the 𝐿1 norm.

The Bregman divergence with respect to the Euclidean mirror map is 𝐷𝜔(𝑥, 𝑦) =
1
2
‖𝑥− 𝑦‖2,

i.e. the squared Euclidean distance, and the divergence with respect to the unnormalized

entropy mirror map is 𝐷𝜔(𝑥, 𝑦) =
∑︀

𝑒(𝑥𝑒 ln(𝑥𝑒/𝑦𝑒)−𝑥𝑒+𝑦𝑒), i.e. the KL-divergence. We sum-

marize a few examples of mirror maps and their corresponding divergences in Table 2.2. The

Bregman divergence corresponding to a 𝜅-strongly convex function is also 𝜅-strongly convex

in the first parameter. It is straightforward to check that the squared Euclidean distance is

1-strongly convex with respect to the 𝐿2 norm. The strong convexity of the KL-divergence

and the Itakura-Saito divergence follows from Pinsker’s inequality, after normalizing 𝐵(𝑓)

by 𝑓(𝐸) (such that 𝑥 ∈ 𝐵(𝑓) implies ‖𝑥‖1 = 1), under the choice of the 𝐿1 norm. Last, the

Itakura-Saito divergence corresponds to a strictly convex function, 𝜔(𝑥) = − log(𝑥). How-

39

ever, one can still bound its strong convexity coefficient with respect to the 𝐿2 norm whenever

‖𝑥‖∞ is bounded for 𝑥 ∈ 𝑃 , by using the fact that if ∇2ℎ ⪰ 𝜅𝐼 for twice-differentiable func-

tions ℎ(·), then ℎ(·) is 𝜅-strongly convex. We summarize the strong-convexity properties of

the above mentioned divergences in Table 3.1.

𝜔(x) =
∑︀

w(xe) D𝜔(x,y) Divergence
‖𝑥‖2/2

∑︀
𝑒(𝑥𝑒 − 𝑦𝑒)

2/2 Squared Euclidean Distance∑︀
𝑒(𝑥𝑒 log 𝑥𝑒 − 𝑥𝑒)

∑︀
𝑒

(︀
𝑥𝑒 log(𝑥𝑒/𝑦𝑒)− 𝑥𝑒 + 𝑦𝑒

)︀
Generalized KL-divergence

−
∑︀

𝑒 log 𝑥𝑒

∑︀
𝑒

(︀
𝑥𝑒/𝑦𝑒 − log(𝑥𝑒/𝑦𝑒)− 1

)︀
Itakura-Saito Distance∑︀

𝑒 𝑥𝑒 log 𝑥𝑒 +
∑︀

𝑒(1 −
𝑥𝑒) log(1− 𝑥𝑒)

∑︀
𝑒 𝑥𝑒 log(𝑥𝑒/𝑦𝑒) + (1 −

𝑥𝑒) log((1− 𝑥𝑒)/(1− 𝑦𝑒))
Logistic Loss

Table 2.2: Examples of some uniform separable mirror maps and their corresponding divergences.
Itakura-Saito distance [Itakura and Saito, 1968] has been used in processing audio signals and
clustering speech data (for e.g. in [Banerjee et al., 2005]).

The rate of convergence of the mirror descent algorithm depends on the radius of the set

𝑋 with respect to 𝜔, where the radius 𝑅 is defined using 𝑅2 = max𝑥∈𝑋 𝜔(𝑥)−min𝑥∈𝑋 𝜔(𝑥).

We include the formal statement regarding the rate of convergence of the mirror descent

algorithm:

Theorem 2 (see for e.g. [Bubeck, 2014]). Let 𝜔 be a mirror map 𝜅-strongly convex on 𝑋∩𝒟

w.r.t. ‖ · ‖. Let 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) − min𝑥∈𝑋 𝜔(𝑥) and ℎ be convex and 𝐺-Lipschitz w.r.t.

‖ · ‖. Then, the mirror descent algorithm with 𝜂 = 𝑅
𝐺

√︁
2𝜅
𝑡

satisfies

ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥(𝑠))− ℎ(𝑥*) ≤ 𝑅𝐺

√︂
2

𝜅𝑡
.

Even though in the description of the algorithm, we required a weaker condition of

the mirror map to be strictly convex, rate of convergence depends on the strong-convexity

parameter of the mirror map. In many cases it is possible to get a bound on the strong-

convexity parameter when considering strictly-convex mirror maps over a bounded set. For

instance, the Itakura-Saito divergence is generated from a strictly convex mirror map, 𝜔(𝑥) =

−
∑︀

𝑒 log 𝑥𝑒. However, it is easy2 to show that the divergence is 1-strongly convex over (0, 1]𝑛

under the ‖ · ‖2 norm.
2If a function ℎ is twice-differentiable, then it is 𝑚-strongly convex with respect to the 𝐿2 norm if

∇2ℎ ⪰ 𝑚𝐼 (for e.g. [Boyd and Vandenberghe, 2009], Chapter 9).

40

Next, if the function ℎ is smooth, then one can use a variant of the mirror descent

algorithm to obtain a faster convergence rate of 𝑂(1/𝑡). This method is called the mirror-

prox algorithm [Nemirovski, 2004] and it is described by the following iterations starting

with 𝑥(1) = argmin𝑥∈𝑋∩𝒟 𝜔(𝑥):

∇𝜔(𝑦(𝑡+1)′) = ∇𝜔(𝑥(𝑡))− 𝜂∇ℎ(𝑥(𝑡)), (2.9)

𝑦(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1)′), (2.10)

∇𝜔(𝑥(𝑡+1)′) = ∇𝜔(𝑥(𝑡))− 𝜂∇ℎ(𝑦(𝑡+1)), (2.11)

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑥
(𝑡+1)′). (2.12)

Mirror prox will be helpful in 5 in showing a faster convergence when minimizing smooth

functions over a 0/1 polytope with the help of the MWU algorithm over the simplex of the

vertices. The rate of convergence of the mirror-prox algorithm for minimizing smooth convex

functions is given by the following theorem.

Theorem 3 (see for e.g. [Bubeck, 2014]). Let 𝜔 be a mirror map 𝜅-strongly convex on 𝑋∩𝒟

w.r.t. ‖ · ‖. Let 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) − min𝑥∈𝑋 𝜔(𝑥) and ℎ be convex and 𝛽−smooth w.r.t.

‖ · ‖. Then, the mirror-prox algorithm with 𝜂 = 𝜅
𝛽

satisfies

ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑦𝑠+1)− ℎ(𝑥*) ≤ 𝛽𝑅2

𝜅𝑡
.

We give many other variants of the mirror descent algorithm and their iterations in Tables

A.1, A.2 and A.3. Note that all of them involve a projection step (in each iteration), and

this is a separable convex minimization in many cases specifically for divergences listed in

Table 2.2. Computing this step efficiently when 𝑋 is a submodular base polytope is the

main question answered in Chapter 3.

We next discuss another first-order optimization method, Frank-Wolfe that does not rely

on the computation of projections [Frank and Wolfe, 1956]. The following presentation of the

Frank-Wolfe method (also known as the conditional gradient method) is inspired by the work

of [Jaggi, 2013]. The vanilla Frank-Wolfe method for minimizing a convex and differentiable

41

function ℎ(·) over a compact convex set 𝑋 starts with an arbitrary 𝑥(0) ∈ 𝑋, and for each

iteration 𝑡 ≥ 0, repeats

𝑠(𝑡) ∈ argmin
𝑠∈𝑋
⟨𝑠,∇ℎ(𝑥(𝑡))⟩, (2.13)

𝑥(𝑡+1) = (1− 𝛾)𝑥(𝑡) + 𝛾𝑠(𝑡), where 𝛾 =
2

2 + 𝑡
. (2.14)

The rate of convergence of the Frank-Wolfe method depends on a parameter 𝐶ℎ, the

curvature constant of the function ℎ. It is defined for convex and differentiable functions

ℎ(·) with respect to a compact domain 𝒳 , as

𝐶ℎ := sup
𝑥,𝑠∈𝑋,𝛾∈[0,1],𝑦=𝑥+𝛾(𝑠−𝑥)

2

𝛾2
(ℎ(𝑦)− ℎ(𝑥)− ⟨𝑦 − 𝑥,∇ℎ(𝑥)⟩).

For instance, for ℎ(𝑥) := 1
2
‖𝑥‖22, the curvature 𝐶ℎ is simply the squared Euclidean diameter

max𝑥∈𝑋,𝑠∈𝑋
1
2
‖𝑠 − 𝑥‖2 of the domain 𝑋. We next state the rate of converge of the vanilla

Frank-Wolfe method to approximate minimizers of the function ℎ(·).

Theorem 4 ([Jaggi, 2013]). For each 𝑡 ≥ 1, the iterates 𝑥(𝑡) of the vanilla Frank-Wolfe

algorithm satisfy

ℎ(𝑥(𝑡))−min
𝑥∈𝑋

ℎ(𝑥) ≤ 2𝐶ℎ

𝑡+ 2
.

The step-size 𝛾 can be either pre-determined (as in (2.14)), or can be selected using

inexact or exact line search (along the line segment joining 𝑠(𝑡) and 𝑥(𝑡)). Note that unlike

the mirror descent algorithm (and its variants), the Frank-Wolfe algorithm does not depend

on the choice of a norm.

Even though the Frank-Wolfe method is simple to state and computationally inexpensive

in many cases (especially for submodular polytopes since the linear optimization step can be

computed using Edmonds’ greedy algorithm), the mirror descent algorithm is more general,

and it is optimal (upto a constant factor) in terms of the convergence rate achievable by

any first-order optimization method, as can be observed from the following theorem (it is

attributed to [Nemirovski and Yudin, 1983]).

Theorem 5 ([Nesterov, 2013], Chapter 3). Let 𝑘 ≤ 𝑛, 𝐺,𝑅 > 0. There exists a convex

42

function ℎ(·) with ‖∇ℎ‖2 ≤ 𝐺 such that for any first-order algorithm that only uses sub-

gradients that outputs 𝑥(𝑖) in iteration 𝑖,

min
1≤𝑖≤𝑘

ℎ(𝑥(𝑖))− min
‖𝑥‖≤𝑅

ℎ(𝑥) ≥ 𝑅𝐺

2(1 +
√
𝑘)

.

We refer the interested reader to [Ben-Tal and Nemirovski, 2001] (for details on first-

order methods, especially the mirror descent algorithm), [Nesterov, 2013] (for lower bounds

on rate of convergence of first-order convex minimization methods under different settings),

[Bubeck, 2014] (for a compilation of the mirror descent algorithm and its variants), [Grigas,

2016] (for analysis of the Frank-Wolfe method) and [Boyd and Vandenberghe, 2009] (for

background on convex optimization).

2.2.3 Online learning framework

We next review the basics of the online learning framework and algorithms, as required for

interpreting the results of Chapter 5. The online learning framework can be described as a

repeated game between a decision maker (or simply a learner) and an adversary as follows:

at each time step 𝑡 = 1, . . . , 𝑛, the learner selects, possibly in a randomized way, a decision

or a feasible solution 𝑥(𝑡) from a given bounded set 𝑋 ⊆ R𝑛. Next after potentially observing

the learner’s decision, the adversary chooses a loss vector 𝑙(𝑡) : 𝑋 → R, and the loss incurred

by the learner is 𝑙(𝑡)(𝑥(𝑡)). Note that there is no assumption on the distribution from which

the loss functions are drawn (as opposed to statistical learning models). The goal of online

learning is to minimize the “regret”: the difference between the total cost incurred by the

algorithm and that of the best fixed decision in hindsight:

𝑅𝑇 =
𝑇∑︁
𝑡=1

𝑙(𝑡)(𝑥(𝑡))−min
𝑥∈𝑋

𝑇∑︁
𝑡=1

𝑙(𝑡)(𝑥), (2.15)

To make this framework meaningful, the loss functions chosen by the adversary can not

be allowed to be unbounded (otherwise the adversary can choose a high loss in the first time

step, and subsequently select small losses to never allow the algorithm to recover from the

loss of the first round). Loss functions 𝑙(𝑡) can be convex in learner’s strategy (the framework

43

is then referred to as online convex optimization if 𝑋 is also convex), or linear (online linear

optimization), or can come from a fixed loss function 𝑙(𝑡)(𝑥(𝑡)) = 𝑙(𝑥(𝑡), 𝑦(𝑡)) where 𝑦(𝑡) ∈ 𝑍

is played by the adversary (online prediction, where 𝑦(𝑡) is the true parameter that the

algorithm is trying to predict and 𝑙(·, ·) is the loss that captures how good the prediction

is). We are interested in the setting where 𝑋 = 𝒰 is the set of combinatorial strategies

or the vertex set of a 0/1 polytope and the losses are linear functions of the combinatorial

strategies.

An algorithm is said to perform well if its regret is sublinear as a function of the 𝑇 , i.e.

lim𝑇→∞𝑅𝑇 = 0, since it means that on an average the algorithm performs as well as the

best fixed decision in hindsight. Such an online learning algorithm is said to have low regret

or is simply called Hannan-consistent.

To develop some intuition, we first review a standard example of the online learning

framework: prediction from experts advice. The decision maker or learner has to choose

(possibly randomly) from the advice of 𝑛 given experts. Thus, the decision set 𝑋 = Δ𝑛 =

{𝑥 |
∑︀

𝑖 𝑥𝑖 = 1, 𝑥 ≥ 0}. After selecting 𝑥(𝑡) ∈ 𝑋, a loss in [0, 1] is revealed for each expert,

i.e. 𝑙(𝑡) ∈ [0, 1]𝑛 is revealed, and the learner incurs a loss of 𝑥(𝑡)𝑇 𝑙(𝑡). Here, 𝑥(𝑡)𝑇 𝑙(𝑡) can be

interpreted as the expected loss of the learner (under randomization to the 𝑥(𝑡) over [𝑛]).

The goal of the learner is to perform as well as the best expert in hindsight, i.e. minimize∑︀𝑇
𝑡=1 𝑥

(𝑡)𝑇 𝑙(𝑡)−min𝑖∈[𝑛]
∑︀𝑇

𝑡=1 𝑙
(𝑡)(𝑖). A very intuitive weighted majority algorithm, also called

the multiplicative weights update (MWU) algorithm, is known to achieve sublinear regret for

this setting. The MWU algorithm starts with a uniform probability over all the experts. As

losses for each expert are observed in the subsequent rounds, the algorithm multiplicatively

reduces the probabilities such that the advice of experts with larger losses is taken with lower

probability. We review the algorithm in more detail in Chapter 5. In the above example, one

can also think of the experts being an exponential number of combinatorial strategies like

paths, matchings, permutations, spanning trees. In this setting, the losses are often selected

to be linear and can model congestion on the path, percentage clicks on a permutations, etc.

Next, it is useful to recall the online mirror descent algorithm, which is a variant of the

previously mentioned mirror descent algorithm, and extends to many important settings

within online learning (for instance, when only estimates of the gradient are available). The

44

online adaptation is often attributed to Zinkevich [Zinkevich, 2003] and mirror descent is due

to the seminal work of Nemirovski and Yudin in 1983 [Nemirovski and Yudin, 1983]. As in the

case of mirror descent, this algorithm is also defined with respect to a mirror map 𝜔 : 𝒟 → R

that is strictly-convex with respect to ‖·‖. The learner selects 𝑥(𝑡) ∈ 𝑋 (𝑋 ⊆ 𝒟) where we can

think of 𝑋 as a combinatorial polytope and the adversary is allowed to select 𝐺-Lipschitz

convex loss functions 𝑙(𝑡) in each round. The algorithm is the same as mirror descent,

except that the gradient step is now computed with respect to the gradients of the loss

functions 𝑙(𝑡) (as opposed to a fixed convex function). The first iterate 𝑥(1) = argmin𝑥∈𝑋 𝜔(𝑥).

Subsequently, for 𝑡 > 1, the algorithm first moves in an unconstrained way using

∇𝜔(𝑦(𝑡+1)) = ∇𝜔(𝑥(𝑡))− 𝜂∇𝑙(𝑡)(𝑥(𝑡)),

and the next iterate 𝑥(𝑡+1) is obtained by the Bregman projection step:

𝑥(𝑡+1) = argmin
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1)), (2.16)

The regret of the online mirror descent algorithm is known to scale as 𝑂(𝑅𝐺
√
𝑡) where

recall that 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) − min𝑥∈𝑋 𝜔(𝑥). We restate the theorem about the regret of

the online mirror-descent algorithm.

Theorem 6 (see for e.g. [Rakhlin and Sridharan, 2014]). Consider online mirror descent

based on a 𝜅-strongly convex (with respect to || · ||) and differentiable mirror map 𝜔 : 𝒟 → R

on a closed convex set X (𝑋 ⊆ 𝒟). Let each loss function 𝑙(𝑡) : 𝑋 → R be convex and

G-Lipschitz, i.e. ||∇𝑙(𝑡)||* ≤ 𝐺 ∀𝑡 ∈ {1, . . . , 𝑇} and let the radius 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) −

min𝑥∈𝑋 𝜔(𝑥). Further, we set the learning rate 𝜂 = 𝑅
𝐺

√︁
2𝑘
𝑇

then:

𝑇∑︁
𝑡=1

𝑙(𝑡)(𝑥(𝑡))−
𝑇∑︁
𝑡=1

𝑙(𝑡)(𝑥*) ≤ 𝑅𝐺

√︂
2𝑇

𝜅
for all 𝑥* ∈ 𝑋.

Even though the convex function is allowed to change in each round, the analysis of the

algorithm does not change much compared to that of mirror descent, as in Theorem 2. In

fact, setting each 𝑙(𝑡) = ℎ(·) recovers the mirror descent algorithm for minimizing a convex

45

function ℎ(·). Further, we will see in Chapter 5 that the multiplicative weights update

algorithm can also be recovered by performing online mirror descent with the unnormalized

entropy mirror map over the simplex of experts ([Beck and Teboulle, 2003], also see [Bubeck,

2011] for a short proof).

We refer the interested reader to [Hazan, 2012] (for an overview of online convex opti-

mization) and [Cesa-Bianchi and Lugosi, 2006] and [Audibert et al., 2013] (for background

on online combinatorial optimization).

2.3 Related Work

We now discuss briefly the related work concerned with each chapter, and go into more

details within each chapter. We start with summarizing the related work for minimizing

separable convex functions over submodular base polytopes (P1), the key question considered

in Chapter 3:

(P1) : min
𝑥∈𝐵(𝑓)

ℎ(𝑥) :=
∑︁
𝑒∈𝐸

ℎ𝑒(𝑥(𝑒)). (2.17)

Separable convex minimization The related work on exact separable convex minimiza-

tion (under infinite precision arithmetic) can be broadly characterized into primal-style ap-

proaches that always maintain a feasible point in the submodular polytope and dual-style

approaches that work by finding violated inequalities while moving towards the submodular

polytope.

In 1980, Fujishige gave a primal-style method, the monotone algorithm, to find the min-

imizer of min𝑥∈𝐵(𝑓)

∑︀
𝑒 𝑥

2
𝑒/𝑤𝑒 for a positive weight vector 𝑤 ∈ R𝐸

>0 [Fujishige, 1980]. Our

algorithm Inc-Fix can be viewed as a generalization of the monotone algorithm, that works

for minimizing any differentiable strictly convex and separable function. In 1991, Fujishige

and Groenevelt developed a dual-style method, decomposition algorithm, for separable con-

vex minimization over submodular base polytopes [Groenevelt, 1991]. It generates a sequence

of violated inequalities and computes a feasible solution only at the completion of the algo-

rithm. There has been a lot of work since then to speed up the decomposition algorithm and

46

(a) Primal-style methods (b) Dual-style methods

Figure 2-1: Primal-style algorithms always maintain a feasible point in the submodular polytope
𝑃 (𝑓). Dual-style algorithms work by finding violated constraints till they find a feasible point in
𝐵(𝑓).

show rationality of its solutions (for e.g. see [Nagano, 2007b]). Some other recent primal-

style methods for minimizing specific convex functions over cardinality-based submodular

polytopes include algorithms by Yasutake et al. [Yasutake et al., 2011] (for minimizing

KL-divergence over the permutations base polytope), Suehiro et al. [Suehiro et al., 2012]

(for minimizing KL-divergence and squared Euclidean distance over cardinality-based base

polytopes) and Krichene et al. [Krichene et al., 2015] (for minimizing 𝜑-divergences over the

simplex). We give a modification of Inc-Fix, called Card-Fix, for minimizing separable

convex functions over cardinality-based polytopes that subsumes these latter results.

One can also use general purpose projection-free convex minimization methods to find

minimizers of these separable convex functions. One such alternative is to use the conditional

gradient method or the Frank-Wolfe method [Frank and Wolfe, 1956]. The Frank-Wolfe

method is attractive as it only requires to solve linear optimization as a subproblem, however

it generates approximate minimizers, whereas the above mentioned algorithms, Inc-Fix,

decomposition method, monotone algorithm are exact in nature (assuming infinite precision

arithmetic). We discuss the tradeoffs of these approaches compared to our algorithm in more

detail in Chapter 3.

Next, in Chapter 4, we consider the problem of computing maximum feasible movement

47

along a direction starting with a point inside an extended submodular polytope:

(P2): given 𝑎 ∈ R𝑛, 𝑥0 ∈ 𝐸𝑃 (𝑓), compute max{𝛿 | 𝑥0 + 𝛿𝑎 ∈ 𝐸𝑃 (𝑓)},

and next, we summarize the related work for the parametric line search problem.

Parametric line search As we discussed in the introduction, a natural way to solve the

parametric line search problem (P2) is to use a cutting plane approach: Dinkelbach’s method

or the discrete Newton’s method. While a bound of 𝑛 iterations was known when 𝑎 ≥ 0

(for e.g. [Topkis, 1978]), no bound better than exponential iterations was known for general

directions before our work. We show a quadratic bound on the number of iterations of the

discrete Newton’s algorithm, which implies a worst-case running time for the parametric line

search problem of 𝑂(𝑛2) submodular function minimizations. The only other strongly poly-

nomial algorithm for the parametric line search problem was due to Nagano et al. [Nagano,

2007b] that relies on Megiddo’s parametric search framework and requires 𝑂̃(𝑛8) submodu-

lar function minimizations. Some of our analysis draws ideas from Radzik’s analysis of the

discrete Newton’s method for a related problem of max 𝛿 : min𝑆∈𝒮 𝑏(𝑆) − 𝛿𝑎(𝑆) ≥ 0 where

both 𝑎 and 𝑏 are modular functions and 𝒮 is an arbitrary collection of sets [Radzik, 1998].

Our setting is both more general (since we consider submodular functions as opposed to

modular functions) and restrictive (since we consider the power set of 𝐸 as opposed to an

arbitrary collection of sets) compared to his. We highlight similarities and differences from

Radzik’s analysis in Chapter 4.

The focal point of Chapter 5 is the multiplicative weights update (MWU) algorithm

and its application to do online linear optimization over combinatorial strategies and for

convex minimization over combinatorial polytopes. Next, we review the background for the

multiplicative weights update method in this context.

Approximate generalized counting The multiplicative weights update algorithm has

been rediscovered for different settings in game theory, machine learning, and online learning

with a large number of applications (see [Arora et al., 2012] and the references therein). Most

of the applications of the MWU algorithm have running times polynomial in the number of

48

pure strategies of the learner, an observation also made in [Blum et al., 2008]. In order to

simulate this algorithm efficiently for combinatorial strategies, it does not take much to see

that for linear losses one can use product distributions over the combinatorial set and update

them efficiently in each iteration. These product distributions have been used by [Helmbold

and Schapire, 1997] (for learning over bounded depth binary decision trees), [Takimoto and

Warmuth, 2003] (for learning over simple paths in directed graphs), [Koo et al., 2007] (for

learning over spanning trees) to give a few examples. However, the analysis of prior works

was very specific to the structure of the problem. We generalize and abstract the analysis to

enable learning over vertices of 0/1 polytopes as long as there exists an efficient generalized

approximate counting oracle. As a result, we can add to the list of problems where the

MWU can be simulated efficiently by compiling known existing counting oracles.

The second part of the chapter talks about performing convex minimization over any 0/1

polytope 𝑃 using the MWU algorithm that maintains a (product) probability distributions

over its vertex set. We extend the framework for online linear optimization to minimize

convex functions over combinatorial polytopes using approximate counting oracles. This

generalizes known results where the MWU algorithm has been used to minimize convex

functions over the 𝑛-dimensional simplex (however the simplex we consider lies in the space

of an exponential number of vertices of the 0/1 polytope).

Finally, in Chapter 6, we discuss techniques for finding Nash-equilibria in two-player

zero-sum games where each player plays a combinatorial object and discuss the applications

of the above mentioned results. The use of online learning for finding Nash-equilibria in two-

player zero-sum games has been known, as early as the work of Robinson [Robinson, 1951].

Under positive diagonal loss matrices for matroid games, where each player plays bases of a

matroid, we show that the symmetric Nash-equilibria coincide with lexicographically optimal

bases (studied in [Fujishige, 1980]). To the best of our knowledge, this connection has not

been made before, and this results in another way of computationally finding symmetric

Nash-equilibria (if they exist) using a single convex minimization.

49

50

Chapter 3

Separable Convex Minimization

“Whatever affects one directly, affects all indirectly.”
- Martin Luther King, Jr.

Motivated by bottlenecks in various first-order optimization methods across game theory,

online learning and convex optimization, in this chapter we consider the fundamental ques-

tion of minimizing a separable strictly convex function over a submodular base polytope.

Given a ground set 𝐸 (𝑛 = |𝐸|) of elements, we consider submodular set functions 𝑓(·)

(refer to (2.1) for definition) that are monotone non-decreasing, i.e., 𝑓(𝐴) ≤ 𝑓(𝐵) for all

𝐴 ⊆ 𝐵 ⊆ 𝐸, normalized such that 𝑓(∅) = 0 and non-negative such that 𝑓(𝐴) > 0 for all

∅ ≠ 𝐴 ⊆ 𝐸 (without loss of generality). As discussed in Chapter 2, the submodular poly-

tope is defined as 𝑃 (𝑓) = {𝑥 ∈ R𝑛
+ :
∑︀

𝑒∈𝑈 𝑥(𝑒) ≤ 𝑓(𝑈) ∀ 𝑈 ⊆ 𝐸} and the base polytope as

𝐵(𝑓) = {𝑥 ∈ R𝑛
+ :
∑︀

𝑒∈𝐸 𝑥(𝑒) = 𝑓(𝐸), 𝑥 ∈ 𝑃 (𝑓)}. We consider the problem of minimizing

separable strictly1 convex and differentiable functions over submodular base polytopes:

(P1) : min
𝑥∈𝐵(𝑓)

ℎ(𝑥) :=
∑︁
𝑒∈𝐸

ℎ𝑒(𝑥(𝑒)). (3.1)

First-order projection-based optimization methods like mirror descent or online mirror

descent are required to solve (P1), for computing a projection with respect to a certain convex

metric called Bregman divergence. We refer the reader to Section 2.2.2 for background on

1Recall that ℎ : 𝑋 → R is strictly convex if 𝑋 is convex, and ℎ(𝜃𝑥+ (1− 𝜃)𝑦) < 𝜃ℎ(𝑥) + (1− 𝜃)ℎ(𝑦) for
any 0 < 𝜃 < 1 and 𝑥, 𝑦 ∈ 𝑋,𝑥 ̸= 𝑦 (refer to Section 2.2.2).

51

these divergences and useful references on first-order methods. Some important examples of

Bregman divergences that we will refer to throughout the chapter are:

(i) the squared Euclidean distance, ℎ(𝑥) = 1
2
‖𝑥− 𝑦‖22, for a given 𝑦 ∈ R𝐸,

(ii) KL-divergence, ℎ(𝑥) =
∑︀

𝑒(𝑥𝑒 ln(𝑥𝑒/𝑦𝑒)− 𝑥𝑒 + 𝑦𝑒), for a given2 𝑦 ∈ R𝐸
>0,

(iii) Logistic loss, ℎ(𝑥) =
∑︀

𝑒 𝑥𝑒 ln
𝑥𝑒

𝑦𝑒
+
∑︀

𝑒(1− 𝑥𝑒) ln
1−𝑥𝑒

1−𝑦𝑒
, for 𝑦 ∈ (0, 1)𝐸 and,

(iv) Itakura-Saito distance, ℎ(𝑥) =
∑︀

𝑒(𝑥𝑒/𝑦𝑒 − ln(𝑥𝑒/𝑦𝑒)− 1), for 𝑦 ∈ R𝐸
>0.

Note that all the above-mentioned divergences are separable over the ground set. We review

their domain and convexity properties in Table 3.1.

The main result of this chapter is a novel algorithm Inc-Fix for solving (P1). The key

idea of the algorithm comes from first order optimality conditions, i.e. if a point 𝑥* is a

minimizer of a convex function ℎ : 𝑋 → R over a convex set 𝑋, then it must hold that

∇ℎ(𝑥*)𝑇 (𝑥* − 𝑧) ≤ 0 for all points 𝑧 ∈ 𝑋. Read differently, if one somehow knew the value

of ∇ℎ(𝑥*) = 𝑐 (say), then 𝑥* would minimize the linear function 𝑐𝑇 𝑧 over 𝑧 ∈ 𝑋. This point

is subtle, yet crucial, so we state it again as a question.

“Can one construct a gradient vector ∇ℎ(𝑥*) such that the corresponding point 𝑥*

minimizes the corresponding first-order approximation of the convex function at 𝑥*?"

This implies that perhaps for problems where linear optimization is well understood, one

can devise a specialized convex minimization method by considering the first-order optimality

conditions3. Linear optimization for submodular base polytopes is given by the well-known

Edmonds’ greedy algorithm [Edmonds, 1970]. We use a greedy increase in the gradient space

to construct a point 𝑥* that satisfies the first-order optimality condition. To be more specific,

we start with 0 (or a point in the submodular polytope such that the partial derivatives with

respect to all the elements are equal), and increase the value on elements with the lowest

partial derivative. As these element values are increased, the corresponding partial derivative

also increases (since ℎ is strictly convex). By carefully maintaining the ordering of the partial

2By 𝑦 ∈ R𝐸
>0, we mean 𝑦 ∈ R𝐸 such that 𝑦(𝑒) > 0 for all 𝑒 ∈ 𝐸.

3This observation is independent of whether the polytope is submodular or not.

52

derivatives at every iterate of the algorithm as well as feasibility inside the submodular

polytope 𝑃 (𝑓), we ensure that the first-order approximation of the convex function at the

constructed point is in fact minimized by that point itself. Informally, our main result in

this chapter is the following.

Theorem 7 (informal). Consider a strictly convex and differentiable separable function∑︀
𝑒∈𝐸 ℎ𝑒(·) : 𝒟 → R such that mild technical conditions over the domain are satisfied. Then,

the Inc-Fix algorithm starting with 0 ∈ 𝒟 or some 𝑥0 ∈ 𝑃 (𝑓) such that ∇ℎ(𝑥0) = 𝑐1 for

some 𝑐, results in 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑧(𝑒)).

The rest of the chapter is organized as follows. We discuss the precise algorithm Inc-

Fix in Section 3.1 and its proof of correctness in Section 3.2, along with equivalence of

convex minimization problems and provable gaps from optimality in case of early termination.

Inc-Fix requires to compute the maximum feasible increase in the partial derivatives of

elements, and this is not quite straightforward to compute. It entails finding maximum

𝛿 such that (∇ℎ)−1(∇ℎ(𝑥0) + 𝛿𝜒(𝑀)) ∈ 𝑃 (𝑓), given 𝑥0 ∈ 𝑃 (𝑓),𝑀 ⊆ 𝐸. We present a

parametric gradient search method in Section 3.3.1, and show that the Inc-Fix algorithm

can be implemented using 𝑂(𝑛) parametric submodular function minimizations (PSFM). We

further show, in Section 3.3.2, that the Inc-Fix algorithm can also be implemented in overall

𝑂(𝑛) calls to submodular function minimizations (that returns the maximal minimizer),

which is currently faster than performing 𝑂(𝑛) PSFM. The running time of our method

does not depend on the convexity constants (smoothness or strong-convexity constants) of

the convex function ℎ.

Inc-Fix only requires oracle access to the value of the submodular function 𝑓(·). How-

ever, if some more information about the structure of the submodular function is known, then

it can be exploited for obtaining faster running times. We specifically consider cardinality-

based submodular functions that can be defined as 𝑓(𝑆) = 𝑔(|𝑆|) for some concave function

𝑔(·). We show that a variant of the Inc-Fix algorithm, Card-Fix, can be implemented

overall in 𝑂(𝑛(log 𝑛+ 𝑑)) time (Section 3.4) for minimizing uniform divergences, where 𝑑 is

the number of distinct values of the submodular function. This gives the fastest known run-

ning time for separable convex minimization over cardinality-based submodular polytopes.

53

Both Inc-Fix and Card-Fix require to find the zero of a univariate monotone function as

a subproblem. This can be as simple as dividing two sums (in the case of minimizing the

squared Euclidean distance) or might require the use of a binary search or Newton’s method

(in the case of minimizing the Itakura-Saito divergence). In all our running times, we assume

a constant time oracle for computing this zero.

3.1 The Inc-Fix algorithm

In this section, we discuss our algorithm Inc-Fix to minimize any strictly convex and differ-

entiable separable function ℎ : 𝒟 → R, defined over a convex set 𝒟 ⊆ R𝐸. Separability and

strict convexity allow us to work in the space of gradients such that increasing the partial

derivatives with respect to any element results in a well-defined increase on the value of the

corresponding element. Since our function ℎ is separable, its domain 𝒟 is the product of

domains 𝒟𝑒 for each ℎ𝑒. In the Inc-Fix algorithm, we increase the value of the elements

starting with a feasible point 𝑥(0) ∈ 𝑃 (𝑓), such that feasibility in 𝑃 (𝑓) is always maintained.

Thus, we require that 𝑃 (𝑓) ⊆ 𝒟, i.e. [0, 𝑓({𝑒})] ∈ 𝒟𝑒 for all 𝑒 ∈ 𝐸. We can relax this

condition to allow for 𝑃 (𝑓) ⊆ 𝒟 (i.e., the closure of 𝒟). This is useful, for instance, for

minimizing the KL-divergence over the base polytopes with respect to some 𝑦 ∈ R𝐸
>0, as the

domain of the KL-divergence is R𝐸
>0, however 0 ∈ 𝑃 (𝑓). We next require that 𝐵(𝑓) ∩ 𝒟

must be non-empty, otherwise the minimization over 𝐵(𝑓) is not well-defined. There are a

very few corner cases when 𝐵(𝑓) ∩ 𝒟 = ∅ while 𝑃 (𝑓) ⊆ 𝒟. Since [0, 𝑓({𝑒})] ⊆ 𝒟𝑒 for all 𝑒,

and 𝑓({𝑒}) > 0 by assumption, the only way that 𝐵(𝑓) ∩ 𝒟 = ∅ is if 𝑓({𝑒}) /∈ 𝒟𝑒 for some

𝑒 and 𝑥𝑒 = 𝑓(𝑒) for all 𝑥 ∈ 𝐵(𝑓), i.e. 𝑓(𝐸) = 𝑓({𝑒}) + 𝑓(𝐸 ∖ {𝑒}). Finally, for the ease of

exposition of the proofs in the chapter, we assume that ∇ℎ(𝒟) = R𝐸 (this condition is not

restrictive). To summarize the above conditions, we require (i) 𝑃 (𝑓) ⊆ 𝒟, (ii) 𝐵(𝑓)∩𝒟 ̸= ∅,

and (iii) ∇ℎ(𝒟) = R𝐸.

Our next condition is to help in the choice of the starting point for the algorithm. We

require that either 0 ∈ 𝒟 (observe that 0 ∈ 𝑃 (𝑓) ⊆ 𝒟) or there exists some 𝑥 ∈ 𝑃 (𝑓) such

that ∇ℎ(𝑥) = 𝑐𝜒(𝐸), 𝑐 ∈ R, where 𝜒(𝑆) denotes the characteristic vector of a set 𝑆 ⊆ 𝐸.

This is useful in selecting a starting point 𝑥(0) such that 𝑥(0) has a lower partial-derivative

54

element-wise compared to the optimal solution (even if the optimal solution is not known).

For instance, for minimizing the squared Euclidean distance, ℎ(𝑥) = 1
2
‖𝑥−𝑦‖2 with 𝒟 = R𝐸,

and the starting point of Inc-Fix can be 0 ∈ 𝑃 (𝑓). For minimizing the KL-divergence with

respect to some 𝑦 ∈ R𝐸
>0, we note that 𝒟 = R𝐸

>0 and hence 0 /∈ 𝒟. However, we can select

the starting point to be 𝑐𝑦 for some 0 < 𝑐 < 1 such that 𝑐𝑦 ∈ 𝑃 (𝑓) (this ensures that the

partial derivative is the same for all elements). It is easy4 to see that such a constant 𝑐 exists

due to our assumption on 𝑓 that 𝑓(𝐴) > 0 for ∅ ≠ 𝐴 ⊆ 𝐸.

We list some valid choices for the starting point 𝑥(0) for minimizing various uniform

divergences in Table 3.2. As we assume ℎ to be separable, we use (∇ℎ(𝑥))𝑒 and ℎ′
𝑒(𝑥(𝑒))

interchangeably.

𝜔(𝑥) =
∑︀

𝑤(𝑥𝑒) 𝒟 𝑤′ (𝑤′)−1 ∇𝜔(𝒟) strong-convexity parame-
ter 𝜅 of 𝜔(·)

𝜔(𝑥) = ‖𝑥‖2/2 R𝑛 𝑥 𝑥 R𝑛 𝜅 = 1 w.r.t. ‖ · ‖2
𝜔(𝑥) =

∑︀
𝑒(𝑥𝑒 log 𝑥𝑒 − 𝑥𝑒) R𝑛

>0 log 𝑥 𝑒𝑥 R𝑛 𝜅 = 1/𝑓(𝐸) w.r.t. ‖ · ‖1
over base polytopes 𝐵(𝑓)

𝜔(𝑥) = −
∑︀

𝑒 log 𝑥𝑒 R𝑛
>0 −1/𝑥 −1/𝑥 R𝑛

>0
𝜅 ≥ 1/𝑀2 w.r.t. ‖ · ‖2 for
‖𝑥‖∞ ≤𝑀

𝜔(𝑥) =
∑︀

𝑒 𝑥𝑒 log 𝑥𝑒+
∑︀

𝑒(1−
𝑥𝑒) log(1− 𝑥𝑒)

(0, 1)𝑛 ln(𝑥
1−𝑥)

𝑒𝑥

1+𝑒𝑥 R𝑛 𝜅 = 2/𝑓(𝐸), w.r.t. ‖ · ‖1
over base polytopes 𝐵(𝑓)

Table 3.1: Examples of strictly convex functions and their domains, derivatives with their domains,
inverses and their strong-convexity parameters. Refer to Section 2.2.2 for a discussion.

𝜔(𝑥) 𝐷𝜔(𝑥, 𝑦)
Choice for 𝑥(0) such that 𝑥(0) ∈
𝑃 (𝑓)

‖𝑥‖2/2
∑︀

𝑒(𝑥𝑒 − 𝑦𝑒)
2 𝑥(0) = 0∑︀

𝑒(𝑥𝑒 log 𝑥𝑒 − 𝑥𝑒)
∑︀

𝑒

(︀
𝑥𝑒 log(𝑥𝑒/𝑦𝑒)− 𝑥𝑒 + 𝑦𝑒

)︀
𝑥(0) = 𝑒𝛿𝑦, 𝛿 ≤ 0∑︀

𝑒− log 𝑥𝑒

∑︀
𝑒

(︀
𝑥𝑒/𝑦𝑒 − log(𝑥𝑒/𝑦𝑒)− 1

)︀
𝑥
(0)
𝑒 = 𝑦𝑒/(1−𝛿𝑦𝑒), 𝛿 ≤ 0 ∀𝑒 ∈ 𝐸∑︀

𝑒 𝑥𝑒 log 𝑥𝑒 +
∑︀

𝑒(1 −
𝑥𝑒) log(1− 𝑥𝑒)

∑︀
𝑒 𝑥𝑒 log(𝑥𝑒/𝑦𝑒) + (1 −

𝑥𝑒) log((1− 𝑥𝑒)/(1− 𝑦𝑒))
𝑥
(0)
𝑒 = 𝑒𝛿𝑦𝑒/(1−𝑦𝑒+𝑒𝛿𝑦𝑒), 𝛿 ≤ 0
∀𝑒 ∈ 𝐸

Table 3.2: Valid choices for the starting point 𝑥(0) when minimizing 𝐷𝜔(𝑥, 𝑦) using the Inc-Fix
algorithm, such that either 𝑥(0) = 0 or ∇ℎ(𝑥(0)) = 𝛿𝜒(𝐸). In each case, we can select 𝛿 to be
sufficiently negative such that 𝑥(0) ∈ 𝑃 (𝑓).

The Inc-Fix algorithm The algorithm is iterative and it maintains a vector 𝑥 ∈ 𝑃 (𝑓)∩𝒟.

During the execution of the algorithm, some elements will get tight and thus we will fix them
4Since we assume in this chapter that 𝑓 is monotone and 𝑓(𝐴) > 0 for all non-empty subsets 𝐴, we can

define 𝑥 ∈ R𝑛 as 𝑥(𝑒) = 1
𝑛𝑓({𝑒}) for all 𝑒 ∈ 𝐸. Note that 𝑥 ∈ 𝑃 (𝑓) as it is the average of 𝑛 points in 𝑃 (𝑓).

One way to select 𝑐 such that 𝑐𝑦 ∈ 𝑃 (𝑓), is to set 𝑐 = min𝑒 𝑥(𝑒)/𝑦(𝑒).

55

so that we do not change their value any more. We increase the values on only the non-

fixed elements. When considering 𝑥, we associate a weight vector given by ∇ℎ(𝑥), let 𝑀

be the set of minimum weight elements that have not been fixed and refer to the maximal

tight set with respect to 𝑥 as 𝑇 (𝑥) (unique by submodularity of 𝑓 , Lemma 2.1). We move

𝑥 within 𝑃 (𝑓) in a direction such that ℎ′
𝑒(𝑥𝑒) increases uniformly on elements in 𝑀 , until

one of two things happen: (i) either continuing further would violate a constraint defining

𝑃 (𝑓), i.e. 𝑇 (𝑥) changes or (ii) the set 𝑀 of elements of minimum weight changes. If the

former happens, we fix the tight elements and continue the process on non-fixed elements.

If the latter happens, then we continue to increase the value of the elements in the modified

set of minimum weight elements. Starting with an appropriate 𝑥 = 𝑥(0) ∈ 𝑃 (𝑓), Inc-Fix

algorithm can be stated simply as follows:

(1.) 𝑀 = argmin𝑒∈𝐸∖𝑇 (𝑥) ℎ
′
𝑒(𝑥𝑒)

(2.) While maintaining feasibility in 𝑃 (𝑓), uniformly increase

the value of the partial derivative of the elements in 𝑀 ,

until (i) 𝑇 (𝑥) changes, or (ii) 𝑀 changes.

(3.) If 𝑇 (𝑥) ̸= 𝐸, go to Step (1.).

The complete description of the Inc-Fix algorithm with the help of a pseudocode is given

in Algorithm 1. The additional accounting of tight elements as 𝑀𝑖∩𝑇 (𝑥(𝑖)) in step (14) helps

in proving the correctness of the algorithm. Step (8) computes the second highest partial

derivative value amongst non-fixed elements (to track changes in 𝑀). Step (9) computes

the maximum possible increase, 𝜖2, in the partial derivatives of elements in 𝑀 , while staying

in P(f). Note that even though 𝜖1 might be unbounded, 𝜖2 is always bounded as ∇ℎ is a

strictly increasing function. As ℎ′
𝑒(𝑥(𝑒)) is increased, the corresponding 𝑥(𝑒) increases while

being bounded by the base polytope.

We next discuss Examples 1 and 2 to illustrate how the gradients are increased in each

iteration for developing intuition.

Example 1. Consider minimizing squared Euclidean distance ℎ(𝑥) = 1
2
‖𝑥−𝑦‖2, 𝑥 ∈ 𝐵(𝑓) ⊆

R3
>0 from a given point 𝑦 = (0.05, 0.07, 0.6). Here, we consider a cardinality-based submod-

56

Algorithm 1: Inc-Fix
input : 𝑓 : 2𝐸 → R, ℎ =

∑︀
𝑒∈𝐸 ℎ𝑒, and 𝑥(0) ∈ 𝑃 (𝑓)

output: 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑧(𝑒))

𝑁0 = 𝐸, 𝑖 = 0
repeat // Main loop starts

𝑖← 𝑖+ 1, 𝑥 = 𝑥(𝑖−1)

6 𝑀 = argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥𝑒)

7 while 𝑇 (𝑥) ∩𝑀 = ∅ do // Inner loop starts
8 𝜖1 = min𝑒∈𝑁𝑖−1∖𝑀 ℎ′

𝑒(𝑥𝑒)−min𝑒∈𝑁𝑖−1 ℎ
′
𝑒(𝑥𝑒)

9 𝜖2 = max{𝛿 : (∇ℎ)−1(∇ℎ(𝑥) + 𝛿𝜒(𝑀)) ∈ 𝑃 (𝑓)}
10 𝑥← (∇ℎ)−1(∇ℎ(𝑥) + min(𝜖1, 𝜖2)𝜒(𝑀))
11 𝑀 ← argmin𝑒∈𝑁𝑖−1

ℎ′
𝑒(𝑥𝑒)

end
13 𝑥(𝑖) = 𝑥, 𝑀𝑖 = 𝑀 // Bookkeeping
14 𝑁𝑖 = 𝑁𝑖−1 ∖ (𝑀𝑖 ∩ 𝑇 (𝑥(𝑖))) // Fix tight elements in 𝑀𝑖

until 𝑁𝑖 = ∅; // Until no element can be increased
Return 𝑥* = 𝑥(𝑖).

ular function5 𝑓 : 𝑓(𝑆) = 𝑔(|𝑆|) where 𝑔(∅) = 0, 𝑔(1) = 0.4, 𝑔(2) = 0.6, 𝑔(3) = 0.7. Inc-Fix

starts with 𝑥(0) = 0. Note that ∇ℎ(𝑥(0)) = 0− 𝑦, thus the set of elements with the minimum

partial derivative at the start is 𝑀 = {𝑒3}. Increase in gradient space by 𝜖 corresponds to an

increase in the value of the element by 𝜖 as well. Thus, 𝑥(𝑒3) is increased till 𝑀 changes or

a tight constraint is hit. At 𝑥(𝑒3) = 0.4, the submodular constraint 𝑥(𝑒3) ≤ 𝑓({𝑒3}) = 𝑔(1)

becomes tight, and the algorithm fixes the value of 𝑒3. Thus, 𝑥(1) = (0, 0, 0.4). The set of

minimum gradient elements that are not yet fixed is now 𝑀 = {𝑒2}, and 𝑒2 is raised until

𝑀 changes. Thus, 𝑥(2) = (0, 0.02, 0.4) when 𝑀 increases to {𝑒1, 𝑒2}. In the last iteration, 𝑒1

and 𝑒2 are increased uniformly, to obtain 𝑥(3) = (0.14, 0.16, 0.4). We illustrate the different

states of the computation in Figure 3-1, in the gradient space as well as in the submodular

polytope.

Example 2. Next, let us consider the case of minimizing KL-divergence from the same point,

as in Example 1, 𝑦 = (0.05, 0.07, 0.6) over the base polytope 𝐵(𝑓), as in Example 1. We start

the algorithm with 𝑥(0) = 𝑒𝑐𝑦 (we pick 𝑐 = −3 so that 𝑥(0) ∈ 𝑃 (𝑓)) and thus ∇ℎ(𝑥(0)) =

(ln(𝑥
(0)
𝑒 /𝑦𝑒))𝑒 = −3. Since each element has equal partial derivative value, 𝑀 = {𝑒1, 𝑒2, 𝑒3}.

Increase in gradient space by 𝜖, corresponds to an increase in the value of the elements

proportional to 𝑦. The first increase results in 𝑥(𝑒3) = 0.4, thus setting the corresponding

5Refer to Section 3.4 for more details on cardinality-based functions.

57

(a) Initial gradients at 𝑥(0) (b) Increase to 𝑥(1), Fix 𝑒3 (c) Increase to 𝑥(2)

(d) 𝑥(0) = 0, 𝐵(𝑓) is the
highlighted face of 𝑃 (𝑓) as
described in the main cap-
tion.

(e) 𝑥(1) is obtained by in-
creasing 𝑒3. Fix 𝑒3 due to
tight constraint.

(f) 𝑥(2) is obtained by in-
creasing 𝑒2. 𝑀 changes.

(g) Increase to 𝑥(3) = 𝑥* (h) The optimal solution 𝑥(3) ∈ 𝐵(𝑓) is
obtained by increasing both 𝑒1, 𝑒2.

Figure 3-1: Illustrative gradient space and polytope view of Example 1 that shows Inc-Fix compu-
tations for projecting 𝑦 = (0.05, 0.07, 0.6) under the squared Euclidean distance onto 𝐵(𝑓), where
𝑓(𝑆) = 𝑔(|𝑆|) and 𝑔 = [0.4, 0.6, 0.7]. Projected point is 𝑥(3) = (0.14, 0.16, 0.4).

submodular constraint tight. We get 𝑥(1) = (∇ℎ)−1(−0.405,−0.405,−0.405) ⇒ 𝑥(1)(𝑒3) =

𝑒−0.4050.6 = 0.4. The set of minimum gradient elements that are not yet fixed is now

58

(a) Initial partial derivatives
at 𝑥(0)

(b) Increase to 𝑥(1), Fix 𝑒3 (c) Increase to 𝑥(2) = 𝑥*.

(d) 𝑥(0) = 0, 𝐵(𝑓) is the
highlighted face of 𝑃 (𝑓) as in
Figure 3-1.

(e) 𝑥(1) is obtained by in-
creasing all elements propor-
tional to 𝑦. Fix 𝑒3.

(f) 𝑥(2) = 𝑥* is obtained by
increasing 𝑒1, 𝑒2 proportional
to 𝑦(𝑒1, 𝑒2).

Figure 3-2: Illustrative gradient space and polytope view of Example 2 that shows Inc-Fix com-
putations for projecting 𝑦 = (0.05, 0.07, 0.6) under KL-divergences onto 𝐵(𝑓), where 𝑓(𝑆) = 𝑔(|𝑆|),
𝑔 = [0.4, 0.6, 0.7]. Projected point is 𝑥(3) = (0.125, 0.175, 0.4).

𝑀 = {𝑒1, 𝑒2}. The next increase in value of 𝑒1 and 𝑒2 proportional to 𝑦 gives the optimal

solution 𝑥* = 𝑥(2) = (0.125, 0.175, 0.4). We illustrate the different states of the computation

in Figure 3-2, in the gradient space as well as in the submodular polytope.

3.2 Correctness of Inc-Fix

The correctness of the algorithm follows from the first-order optimality conditions and Ed-

monds’ greedy algorithm. It crucially relies on the following theorem (that holds irrespective

of ℎ(·) begin separable).

Theorem 8. Consider any differentiable convex function ℎ : 𝒟 → R, and a monotone

59

submodular function 𝑓 : 2𝐸 → R with 𝑓(∅) = 0. Let 𝐵(𝑓) ∩ 𝒟 ≠ ∅. For 𝑥* ∈ R𝐸, let

𝐹1, 𝐹2, . . . , 𝐹𝑘 be a partition of the ground set 𝐸 such that (∇ℎ(𝑥*))𝑒 = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and

𝑐𝑖 < 𝑐𝑗 for 𝑖 < 𝑗. Then, 𝑥* = argmin𝑧∈𝐵(𝑓) ℎ(𝑧) if and only if 𝑥* lies in the face 𝐻𝑜𝑝𝑡 of

𝐵(𝑓) given by 𝐻𝑜𝑝𝑡 := {𝑧 ∈ 𝐵(𝑓)| 𝑧(𝐹1 ∪ . . . ∪ 𝐹𝑖) = 𝑓(𝐹1 ∪ . . . ∪ 𝐹𝑖) ∀ 1 ≤ 𝑖 ≤ 𝑘}.

Proof. By first-order optimality conditions, we know that 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑥(𝑒))

if and only if ∇ℎ(𝑥*)𝑇 (𝑧 − 𝑥*) ≥ 0 for all 𝑧 ∈ 𝐵(𝑓). This is equivalent to 𝑥* being in

argmin𝑧∈𝐵(𝑓)∇ℎ(𝑥*)𝑇 𝑧. Now consider the partition 𝐹1, 𝐹2, . . . , 𝐹𝑘 as defined in the statement

of the theorem. Using Edmonds’ greedy algorithm [Edmonds, 1971], we know that any

𝑧* ∈ 𝐵(𝑓) is a minimizer of ∇ℎ(𝑥*)𝑇 𝑧 if and only if it is tight (i.e., full rank) on each

𝐹1 ∪ . . . 𝐹𝑖 for 𝑖 = 1, . . . , 𝑘, i.e., 𝑧* lies in the face 𝐻𝑜𝑝𝑡 of 𝐵(𝑓) given by

𝐻𝑜𝑝𝑡 := {𝑧 ∈ 𝐵(𝑓)| 𝑧(𝐹1 ∪ . . . ∪ 𝐹𝑖) = 𝑓(𝐹1 ∪ . . . ∪ 𝐹𝑖) ∀ 1 ≤ 𝑖 ≤ 𝑘}.

At the end of the Inc-Fix algorithm, there may be some elements at zero value (specif-

ically in cases where 𝑥(0) = 0). In our proof for correctness for the algorithm, we use the

following simple lemma about zero-valued elements that requires the submodular function

to be monotone non-decreasing.

Lemma 3.1. For 𝑥 ∈ 𝑃 (𝑓), if a subset 𝑆 of elements is tight then so is 𝑆 ∖ {𝑒 : 𝑥(𝑒) = 0}.

Proof. Let 𝑆 = 𝑆1 ∪ 𝑆2 such that 𝑥(𝑆2) = 0 and 𝑥(𝑒) > 0 for all 𝑒 ∈ 𝑆1. Then, 𝑓(𝑆1) ≥

𝑥(𝑆1) = 𝑥(𝑆1∪𝑆2) = 𝑓(𝑆1∪𝑆2) ≥ 𝑓(𝑆1), where the last inequality follows from monotonicity

of 𝑓 , implying that we have equality throughout. Thus, 𝑥(𝑆1) = 𝑓(𝑆1).

We now state the main theorem about correctness of the algorithm.

Theorem 9. Consider a differentiable strictly convex and separable function
∑︀

𝑒∈𝐸 ℎ𝑒(·) :

𝒟 → R and a monotone submodular function 𝑓 : 2𝐸 → R with 𝑓(∅) = 0. Assume 𝑃 (𝑓) ⊆

𝒟, 𝐵(𝑓) ∩ 𝒟 ≠ ∅ and ∇ℎ(𝒟) = R𝐸 such that either 0 ∈ 𝒟 or there exists 𝑥(0) ∈ 𝑃 (𝑓)

such that ∇ℎ(𝑥(0)) = 𝑐𝜒(𝐸) for 𝑐 ∈ R. Then, the output of Inc-Fix algorithm is 𝑥* =

argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑧(𝑒)).

60

Proof. Note that since ℎ(𝑥) =
∑︀

𝑒 ℎ𝑒(𝑥(𝑒)) is separable and strictly convex, ℎ′
𝑒 is a strictly

increasing function for each 𝑒 ∈ 𝐸. Note that (∇ℎ)−1 is well-defined for all points in R𝐸 since

we assume ∇ℎ(𝒟) = R𝐸 (this will be useful in implementing step (9)). Consider the optimal

solution 𝑥* = argmin𝑥∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑥𝑒) and let us partition the elements of the ground set 𝐸

into 𝐹1, 𝐹2, . . . , 𝐹𝑘 such that ℎ′
𝑒(𝑥

*(𝑒)) = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and 𝑐𝑖 < 𝑐𝑗 for 𝑖 < 𝑗. We will show

that 𝐹𝑖 = 𝑀𝑖 ∩ 𝑇 (𝑥(𝑖)) and that 𝑘 is the number of main loop iterations of Algorithm 1.

We first claim that in each iteration 𝑖 ≥ 1 of the main loop, if 𝑥 = 𝑥(𝑖−1) ∈ 𝑃 (𝑓) and

𝑁𝑖−1 ̸= ∅ at the start of the inner loop (steps (7)-(11)) then the inner loop terminates. At the

start of the inner loop, 𝑀 = argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥

(𝑖−1)
𝑒), the set of non-fixed elements 𝑁𝑖−1 with

the minimum partial derivative. Since 𝑁𝑖−1 ̸= ∅, 𝑀 is well-defined. By the definition of 𝜖1, it

is the partial derivative value at which we must update the minimum set of elements 𝑀 . 𝜖2

ensures that the potential increase in the partial derivatives is such that the corresponding

point 𝑥 ∈ 𝑃 (𝑓) (𝜖2 ≥ 0 since 𝑥(𝑖−1) ∈ 𝑃 (𝑓)). Finally, 𝑥 is obtained by increasing the partial

derivatives on 𝑀 by min(𝜖1, 𝜖2) amount and 𝑀 is updated correctly. Observe that in each

iteration of the inner loop either the size of 𝑀 increases (in the case when 𝜖1 = min(𝜖1, 𝜖2))

or the size of 𝑇 (𝑥) increases (in the case when 𝜖2 = min(𝜖1, 𝜖2)). Therefore, the inner loop

must terminate with 𝑇 (𝑥) ∩𝑀 ̸= ∅.

Next, we show that if 𝑥 = 𝑥(𝑖−1) ∈ 𝑃 (𝑓), 𝑁𝑖−1 ̸= ∅ and 𝑀 = argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥

(𝑖−1)
𝑒) at

the start of the inner loop (steps (7)-(11)) then the inner loop returns 𝑥 = 𝑥(𝑖) ∈ 𝑃 (𝑓) such

that the following properties hold:

(a.i) 𝑥(𝑖) ≥ 𝑥(𝑖−1). This claim holds as we always increase the partial derivatives on elements

in 𝑀 , resulting in the corresponding element values to increase as ℎ′
𝑒(·) is strictly

increasing for each 𝑒 ∈ 𝐸.

(a.ii) 𝑥(𝑖)(𝑒) = 𝑥(𝑖−1)(𝑒) for 𝑒 ∈ 𝐸 ∖𝑁𝑖−1. This claim holds since we never increase the value

on elements not in 𝑁𝑖−1. 𝑀 is always a subset of 𝑁𝑖−1.

(a.iii) The set of minimum elements grows as the inner loop proceeds. Whenever an increase

in the partial derivatives corresponds to the choice of 𝜖1 (the second lowest partial

derivative value in 𝑁𝑖−1), the set of elements with the minimum partial derivative

increases.

61

(a.iv) 𝑥(𝑖) ∈ 𝑃 (𝑓). This is easy to see as we never increase the tight elements 𝑇 (𝑥).

(a.v) 𝑥(𝑖)(𝑒) = 𝑥(𝑖−1)(𝑒) for 𝑒 ∈ 𝑁𝑖−1 ∖ 𝑀𝑖. This claim holds since 𝑀𝑖 must contain all

elements that were potentially increased in value (using (a.iii)).

We refer to the new value of the partial derivatives of elements in 𝑀𝑖 as 𝜖(𝑖), i.e. 𝜖(𝑖) =

min𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥

(𝑖)
𝑒). Let the set of elements fixed at the end of each iteration be 𝐿𝑖 = 𝑀𝑖 ∩

𝑇 (𝑥(𝑖)). We next prove the following claims at the end of each iteration 𝑖 ≥ 1 of the main

loop.

(b). Since the inner loop exits when 𝐿𝑖 = 𝑀𝑖 ∩ 𝑇 (𝑥(𝑖)) ̸= ∅, we get that 𝑁𝑖 ⊂ 𝑁𝑖−1. Note

that the set of elements fixed by the end of iteration 𝑖 is 𝐸 ∖𝑁𝑖 = 𝐿1∪̇ . . . ∪̇𝐿𝑖
6.

(c). We claim that the set of minimum elements 𝑀𝑖 at the end of any iteration 𝑖 always

contains the non-fixed minimum elements from the previous iteration, i.e., 𝑀𝑖−1∖𝐿𝑖−1 ⊆

𝑀𝑖. This is clear if 𝐿𝑖−1 = 𝑀𝑖−1, so consider the case when 𝐿𝑖−1 ⊂ 𝑀𝑖−1. At the

beginning of the inner loop of iteration 𝑖, 𝑀 = argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥

(𝑖−1)(𝑒)) = 𝑀𝑖−1∖𝐿𝑖−1.

Subsequently, in the inner loop the set of minimum elements can only increase and thus,

𝑀𝑖−1 ∖ 𝐿𝑖−1 ⊆𝑀𝑖.

(d). We next show that the partial derivatives of elements in 𝑀𝑖 can only increase, i.e.

𝜖(𝑖−1) < 𝜖(𝑖) for 𝑖 ≥ 2. Consider an arbitrary iteration 𝑖 ≥ 2. If 𝐿𝑖−1 = 𝑀𝑖−1, then

𝜖(𝑖) = min
𝑒∈𝑁𝑖−1=𝑁𝑖−2∖𝐿𝑖−1

ℎ′
𝑒(𝑥

(𝑖)(𝑒)) (3.2)

≥ min
𝑒∈𝑁𝑖−2∖𝑀𝑖−1

ℎ′
𝑒(𝑥

(𝑖−1)(𝑒)) (3.3)

> min
𝑒∈𝑀𝑖−1

ℎ′
𝑒(𝑥

(𝑖)(𝑒)) = 𝜖(𝑖−1), (3.4)

where (3.3) follows from (a.i). Otherwise, we have 𝐿𝑖−1 ⊂ 𝑀𝑖−1. This implies that

𝑀𝑖−1 ∖ 𝐿𝑖−1 is not tight on 𝑥(𝑖−1), and it is in fact equal to argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥

𝑖−1(𝑒))

(= 𝑀 at the beginning of the inner loop in iteration 𝑖). As this set is not tight, the

partial derivatives can be increased and therefore 𝜖(𝑖) > 𝜖(𝑖−1).

6By ∪̇ we mean disjoint union of sets.

62

Claim (b) implies the termination of the algorithm when for some 𝑡, 𝑁𝑡 = ∅. We also

obtain a partition of 𝐸 into disjoint sets {𝐿1, 𝐿2, . . . , 𝐿𝑡} using (b). From claims (a) and

(b), we get 𝑥(𝑡)(𝑒) = 𝜖(𝑖) for 𝑒 ∈ 𝐿𝑖. Claim (d) implies that the partition in the theorem

{𝐹1, . . . , 𝐹𝑘} is identical to the partition obtained via the algorithm {𝐿1, . . . , 𝐿𝑡} (hence

𝑡 = 𝑘).

To show that 𝑥(𝑡) is indeed tight on each 𝐻𝑖 = 𝐿1 ∪ . . . 𝐿𝑖 for 1 ≤ 𝑖 ≤ 𝑡, we consider two

cases (e) and (e′), depending on how the starting point 𝑥(0) is initialized.

(e). When 𝑥(0) = 0 ∈ 𝑃 (𝑓), we claim that 𝑥(𝑖)(𝑒) = 0 for 𝑒 ∈ 𝑁𝑖 ∖𝑀𝑖. Using (c) we get

𝑁𝑖∖𝑀𝑖 = 𝑁𝑖−1∖𝑀𝑖 ⊆ 𝑁𝑖−1∖(𝑀𝑖−1∖𝐿𝑖). Since 𝐿𝑖∩𝑁𝑖 = ∅, we get 𝑁𝑖∖𝑀𝑖 ⊆ 𝑁𝑖−1∖𝑀𝑖−1.

Using induction (a.v), we get 𝑥(𝑖)(𝑒) = 𝑥(𝑖−1)(𝑒) = . . . = 𝑥(0)(𝑒) = 0 for all 𝑒 ∈ 𝑁𝑖 ∖𝑀𝑖.

(e′) When 𝑥(0) = ∇ℎ−1(𝑐𝜒(𝐸)) ∈ 𝑃 (𝑓), we claim that 𝑀𝑖 = 𝑁𝑖−1. For iteration 𝑖 = 1, it

is clear that 𝑀1 = 𝐸 = 𝑁0 since ℎ′
𝑒(𝑥

(0)(𝑒)) = 𝑐 for all 𝑒 ∈ 𝐸. For iteration 𝑖 > 1,

we have 𝑁𝑖−1 = 𝑁𝑖−2 ∖ 𝐿𝑖−1 = 𝑀𝑖−1 ∖ 𝐿𝑖−1 (by induction on 𝑖 − 2). This implies that

ℎ′
𝑒(𝑥

(𝑖−1)(𝑒)) = 𝜖(𝑖−1) for all the elements in 𝑁𝑖−1.

Finally, we will show by induction that for any iteration 𝑖 ≥ 1, 𝑥(𝑖)(𝐻𝑖) = 𝑓(𝐻𝑖). This

will complete the proof of correctness of Algorithm 1, by using Theorem 8.

Base case: To show 𝑥(1)(𝐿1) = 𝑓(𝐿1) when 𝑥(0) = 0, note 𝑇 (𝑥(1)) = 𝐿1∪̇(𝑇 (𝑥(1)) ∖𝑀1).

Since 𝑇 (𝑥(1)) ∖𝑀1 ⊆ 𝑁1 ∖𝑀1, we get 𝑥(1)(𝑇 (𝑥(1)) ∖𝑀1) = 0 using (e). Using Lemma 3.1,

we get that 𝑥(1) is tight on 𝐿1. When 𝑥(0) = ∇ℎ−1(𝑐𝜒(𝐸)), 𝑀1 = 𝐸 using (e′), therefore

𝑇 (𝑥(1)) = 𝐿1, proving the claim in this case.

Assume the induction hypothesis to be true for 1 ≤ 𝑗 < 𝑖 and consider the case of

𝑗 = 𝑖. Since 𝑥(𝑖) ≥ 𝑥(𝑖−1), 𝑥(𝑖) must also be tight on 𝐿1 ∪ . . . ∪ 𝐿𝑖−1. Note that 𝑇 (𝑥(𝑖))

can be partitioned into {
(︀
𝑇 (𝑥(𝑖)) ∩ (𝐸 ∖ 𝑁𝑖−1

)︀
,
(︀
𝑇 (𝑥(𝑖)) ∩ (𝑁𝑖−1 ∖ 𝑀𝑖)

)︀
,
(︀
𝑇 (𝑥(𝑖)) ∩ 𝑀𝑖

)︀
} =

{
(︀
𝐿1∪ . . .∪𝐿𝑖−1

)︀
,
(︀
𝑇 (𝑥(𝑖))∩ (𝑁𝑖 ∖𝑀𝑖)

)︀
, 𝐿𝑖} using (b). Note that 𝑥(𝑖) is either zero-valued on

𝑁𝑖 ∖𝑀𝑖 using (e) or 𝑁𝑖 ∖𝑀𝑖 = ∅ using (e′). In either case using Lemma (3.1), we get that

𝑥(𝑖) is also tight on
(︀
𝐿1 ∪ . . . ∪ 𝐿𝑖

)︀
.

Finally, by induction this implies that 𝑥* = 𝑥(𝑡) lies in the face 𝐻𝑜𝑝𝑡 as defined in Theorem

8.

63

The analysis of the Inc-Fix algorithm uses the fact that the submodular function is

monotone non-decreasing (in Lemma 3.1). However, we can relax this condition to consider

non-negative submodular functions by using a correspondence between nonempty polyma-

troids and monotone non-decreasing submodular functions.

Non-monotone non-negative submodular functions: Consider the case when 𝑓 is a

non-negative submodular function that is not necessarily monotone. For any non-negative

submodular function 𝑓 , there exists a monotone submodular function 𝑓 such that 𝑃 (𝑓) =

𝑃 (𝑓) (see e.g., Section 44.4 of [Schrijver, 2003]). The Inc-Fix algorithm can use 𝑓 instead

of 𝑓 , however it never needs to compute 𝑓 explicitly. The parametric gradient search (step

(9) in Algorithm 1) can be equivalently performed on 𝑃 (𝑓), and it is easy to show that the

maximum tight set of any 𝑥 ∈ 𝑃 (𝑓) is the same as the maximum tight set with respect to 𝑓 .

3.2.1 Equivalence of problems

A useful corollary of Theorem 8 is the equivalence of various convex minimization problems

such that the partial derivatives of the corresponding minimizers partition the ground set

into the same sets 𝐹1, . . . , 𝐹𝑘. The following result generalizes the equivalence known for

certain convex functions, as discussed in [Nagano and Aihara, 2012].

Corollary 1. Consider any two strictly-convex separable functions ℎ : 𝒟ℎ → R and 𝑔 : 𝒟𝑔 →

R where ℎ =
∑︀

𝑒∈𝐸 ℎ𝑒(𝑥(𝑒)), 𝑔(𝑥) =
∑︀

𝑒∈𝐸 𝑔𝑒(𝑥(𝑒)). Consider any normalized, monotone

submodular function 𝑓 : 2𝐸 → R. Assume ∇ℎ(𝒟ℎ) = R𝐸, 𝑃 (𝑓) ⊆ 𝒟ℎ and 𝐵(𝑓) ∩ 𝒟ℎ ̸= ∅

(respectively for 𝑔). If there exists a strictly monotone (increasing) function 𝜂(·) : R →

R, such that 𝜂(ℎ′
𝑒(𝑥)) = 𝑔′𝑒(𝑥) ∀𝑥 ∈ 𝑃 (𝑓) ∩ 𝒟ℎ ∩ 𝒟𝑔 then argmin𝑧∈𝐵(𝑓)

∑︀
𝑒∈𝐸 ℎ𝑒(𝑧(𝑒)) =

argmin𝑧∈𝐵(𝑓)

∑︀
𝑒∈𝐸 𝑔𝑒(𝑧(𝑒)).

Proof. Consider 𝑘, 𝑙 ∈ 𝐸 such that ℎ′
𝑘(𝑥) < ℎ′

𝑙(𝑥) then 𝜂(ℎ′
𝑘(𝑥)) < 𝜂(ℎ′

𝑙(𝑥))⇒ 𝑔′𝑘(𝑥) < 𝑔′𝑙(𝑥)

for all 𝑥 ∈ 𝑃 (𝑓)∩𝒟ℎ∩𝒟𝑔. Hence, the partition 𝐹1, . . . , 𝐹𝑘 defined in Theorem 8 is the same

for both the convex functions ℎ, 𝑔 implying the equivalence of optimal solutions.

We would like to highlight the fact that the iterate 𝑥(𝑖) follows the same trajectory in

the algorithm Inc-Fix for equivalent convex optimization problems in the sense described

64

above. We can further simplify the exposition of Algorithm 1 for two important special cases

of Bregman divergences: the KL-divergence and the squared Euclidean distance.

KL-divergence is given by 𝐷𝜔(𝑥, 𝑦) =
∑︀

𝑒∈𝐸 𝑥(𝑒) ln(𝑥(𝑒)/𝑦(𝑒))−
∑︀

𝑒∈𝐸 𝑥(𝑒) +
∑︀

𝑒∈𝐸 𝑦(𝑒)

with respect to 𝑦 ∈ R𝐸
>0, and we need to find the maximum possible increase in the gradient7

∇𝐷𝜔 =
(︀
ln(𝑥(𝑒)/𝑦(𝑒))

)︀
𝑒∈𝐸 while remaining in 𝑃 (𝑓). It is easy to show that step (9) in

Inc-Fix corresponds to finding max{𝛿 : 𝑥+ 𝑧 ∈ 𝑃 (𝑓), 𝑧(𝑒) = (𝑒𝛿 − 1)𝑥(𝑒) for 𝑒 ∈𝑀, 𝑧(𝑒) =

0 for 𝑒 /∈ 𝑀}. Another way to project under the KL-divergence is to consider the convex

function 𝑔𝑦(𝑥) =
∑︀

𝑒∈𝐸 𝑥(𝑒)2/2𝑦(𝑒) such that ∇𝑔𝑦(𝑥) = 𝑥/𝑦. By Corollary 1, the minimum

of the KL-divergence 𝐷𝜔(·, 𝑦) and 𝑔𝑦(·) is obtained by the same point in the base polytope.

It is interesting that minimizing 𝑔𝑦 allows the choice of starting point 𝑥(0) = 0, even though

0 is not in the domain of 𝐷𝜔(·, 𝑦). We describe the simplified algorithm in Algorithm8 2.

Algorithm 2: Inc-Fix For Minimizing KL-Divergence
input : 𝑓 : 2𝐸 → R, 𝑓 nonnegative and monotone, 𝑦 ∈ R𝐸

>0

output: 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 𝑧𝑒 ln(𝑧𝑒/𝑦𝑒)

3 𝑁0 = 𝐸, 𝑖 = 0, 𝑥(0) = 0
... same as Algorithm 1, except simplifying lines 6-13 as follows...

6 𝑀 = argmin𝑒∈𝑁𝑖−1
𝑥𝑒/𝑦𝑒

7 while 𝑇 (𝑥) ∩𝑀 = ∅ do
9 𝜖2 = max{𝛿 : 𝑥+ 𝛿𝑦 · 𝜒(𝑀)) ∈ 𝑃 (𝑓)}

10 𝑥← 𝑥+ 𝜖2𝑦 · 𝜒(𝑀); . . . since 𝜖1 =∞
11 𝑀 = argmin𝑒∈𝑁𝑖−1

𝑥𝑒/𝑦𝑒
end

13 𝑥(𝑖) = 𝑥, 𝑀𝑖 = argmin𝑒∈𝑁𝑖−1
𝑥𝑒/𝑦𝑒

Squared Euclidean distance given a 𝑦 ∈ R, is 𝐷𝜔(𝑥, 𝑦) =
1
2
‖𝑥− 𝑦‖2. Here, ∇𝐷𝜔(𝑥, 𝑦) =

𝑥− 𝑦, which simplifies the step (9) in Inc-Fix to max{𝛿 : 𝑥+ 𝛿𝜒(𝑀) ∈ 𝑃 (𝑓)}. We describe

the simplified algorithm in Algorithm 3.

3.2.2 Rounding to approximate solutions

Note that whenever the Inc-Fix method is terminated with an 𝑥(𝑖) (after completing iter-

ation 𝑖), the values on the tight set of elements 𝑇 (𝑥(𝑖)) remains the same throughout the

7Recall that we overload the notation ∇𝐷𝜔(𝑥, 𝑦) to denote 𝜕𝑥𝐷𝜔(𝑥, 𝑦) = ∇𝜔(𝑥)−∇𝜔(𝑦) (Section 2.2.2).
8In step (8), by 𝑦 · 𝜒(𝑀) we mean the vector 𝑑(𝑒) = 𝑦(𝑒) if 𝑒 ∈𝑀 , 𝑑(𝑒) = 0 otherwise.

65

Algorithm 3: Inc-Fix For Minimizing Euclidean Distance
input : 𝑓 : 2𝐸 → R, 𝑓 nonnegative and monotone, 𝑦 ∈ R𝑛

output: 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ‖𝑧 − 𝑦‖2

3 𝑁0 = 𝐸, 𝑖 = 0, 𝑥(0) = 0
... same as Algorithm 1, except simplifying lines 6-13 as follows...

6 𝑀 = argmin𝑒∈𝑁𝑖−1
(𝑥𝑒 − 𝑦𝑒)

7 while 𝑇 (𝑥) ∩𝑀 = ∅ do
8 𝜖1 = min𝑒∈𝑁𝑖−1∖𝑀 (𝑥𝑒 − 𝑦𝑒)−min𝑒∈𝑁𝑖−1

(𝑥𝑒 − 𝑦𝑒)

9 𝜖2 = max{𝛿 : 𝑥+ 𝛿𝜒(𝑀) ∈ 𝑃 (𝑓)}
10 𝑥← 𝑥+min(𝜖1, 𝜖2)𝜒(𝑀)
11 𝑀 = argmin𝑒∈𝑁𝑖−1

(𝑥𝑒 − 𝑦𝑒)

end
13 𝑥(𝑖) = 𝑥, 𝑀𝑖 = argmin𝑒∈𝑁𝑖−1

(𝑥𝑒 − 𝑦𝑒)

algorithm. This results in multiple ways in which intermediate iterates of the algorithm can

be round to the base polytope to obtain approximate solutions to the convex minimization

problem. One can order elements in 𝑁 = 𝐸 ∖ 𝑇 (𝑥(𝑖)) arbitrarily as 𝑒1, . . . , 𝑒|𝑁 |. Let the

approximate solution 𝑥̃ be 𝑥̃(𝑒𝑗) = 𝑓(𝑇 (𝑥(𝑖)) ∪ {𝑒1, . . . , 𝑒𝑗})− 𝑓(𝑇 (𝑥(𝑖)) ∪ {𝑒1, . . . , 𝑒𝑗−1}) for

all 𝑒𝑗 ∈ 𝑁 , 𝑥̃(𝑒) = 𝑥(𝑖)(𝑒) otherwise. It is easy to check that 𝑥̃ ∈ 𝐵(𝑓). Another way to think

about this rounding process is to consider any 𝑥𝑁 ∈ 𝐵(𝑓𝑇 (𝑥(𝑖))), the base polytope of the

contracted submodular function 𝑓𝑇 (𝑥(𝑖)), such that 𝑓𝑇 (𝑥(𝑖))(𝑆) = 𝑓(𝑆 ∪ 𝑇 (𝑥(𝑖))) − 𝑓(𝑇 (𝑥(𝑖)))

(refer to Definition 2). Then, 𝑥̃ is given by 𝑥̃(𝑒) = 𝑥𝑁(𝑒) for 𝑒 ∈ 𝑁 , 𝑥̃(𝑒) = 𝑥(𝑖)(𝑒) otherwise.

Gap from optimality Let 𝑥* be the unique minimum of the convex function ℎ(·) min-

imized over a base polytope 𝐵(𝑓) using the Inc-Fix algorithm. Intermediate iterates 𝑥(𝑖)

in the algorithm enjoy the property that once an element is tight, its value does not change

throughout the algorithm. This helps in bounding the gap from the optimal solution value

ℎ(𝑥*). Next we discuss three ways to obtain lower bounds, each with a different computa-

tional requirement and tightness of the bound.

We know that 𝑥(𝑖)(𝑒) = 𝑥*(𝑒) for all 𝑒 ∈ 𝑇 (𝑥(𝑖)) and 𝑥(𝑖)(𝑒) ≥ 𝑥*(𝑒) for 𝑒 ∈ 𝐸 ∖ 𝑇 (𝑥(𝑖)).

Using convexity of the function ℎ(·), we get the first lower bound:

ℎ(𝑥*) ≥ ℎ(𝑥(𝑖)) +∇ℎ(𝑥(𝑖))𝑇 (𝑥* − 𝑥(𝑖)) (3.5)

≥ ℎ(𝑥(𝑖))−∇ℎ(𝑥(𝑖))𝑇𝑥(𝑖) + min
𝑧∈𝐵(𝑓), ℓ≤𝑧≤𝑢

𝑧𝑇∇ℎ(𝑥(𝑖)), (3.6)

66

where ℓ, 𝑢 ∈ R𝐸 such that {ℓ𝑒, 𝑢𝑒} are the best lower and upper bounds computed on the

value of 𝑥*(𝑒). At the start of the Inc-Fix algorithm, one can set ℓ𝑒 = 0, 𝑢𝑒 = 𝑓({𝑒}) for

each 𝑒 ∈ 𝐸. However these bounds can be updated as more information is obtained, for

instance ℓ𝑒 ≥ 𝑥(𝑖)(𝑒) for any intermediate iterate 𝑥(𝑖) of the Inc-Fix algorithm (we discuss

later in Section 3.3.2 how the upper bound 𝑢𝑒 can be updated as the algorithm progresses).

A submodular polytope intersected with box constraints {𝑧 | 𝑙 ≤ 𝑧 ≤ 𝑢} results in a

polymatroid (see for e.g. Theorem 3.3 in [Fujishige, 2005]), and therefore the minimization

in (3.6) can be computed using Edmonds’ greedy algorithm.

The second lower bound can be obtained by relaxing (3.6) and optimizing 𝑧𝑇∇ℎ(𝑥(𝑖))

only over the box constraints 𝑧𝑒 ∈ [𝑙𝑒, 𝑢𝑒] (and not intersect with the base polytope 𝐵(𝑓)):

ℎ(𝑥*) ≥ ℎ(𝑥(𝑖))−∇ℎ(𝑥(𝑖))𝑇𝑥(𝑖) +
∑︁

𝑒∈𝐸∖𝑇 (𝑥(𝑖))

𝑑𝑒ℎ
′
𝑒(𝑥

(𝑖)
𝑒), (3.7)

where 𝑑𝑒 = 𝑙𝑒 when ℎ′
𝑒(𝑥

(𝑖)
𝑒) > 0 and 𝑑𝑒 = 𝑢𝑒 otherwise. This bound can be computed in

𝑂(1) time, however it is much weaker than (3.6).

Instead of using the first-order approximation of the convex function, given lower and

upper bounds [ℓ𝑒, 𝑢𝑒] on the optimal value of each element 𝑒, we can obtain another lower

bound by simply minimizing the convex functions ℎ𝑒 over [ℓ𝑒, 𝑢𝑒]:

ℎ(𝑥*) ≥ min
𝑧|ℓ𝑒≤𝑧𝑒≤𝑢𝑒

∑︁
𝑒

ℎ𝑒(𝑧𝑒). (3.8)

The time required to compute this bound depends on the complexity of the convex function,

however this results in a tighter bound compared to (3.7).

Let the lower bound on the value of ℎ𝑒(𝑥
*
𝑒) be ℎ

(𝑖)
𝐿 (𝑒) obtained using (3.6), (3.7) or (3.8)

after iteration 𝑖. Suppose 𝑥(𝑖) is rounded to 𝑥̃ ∈ 𝐵(𝑓) as described above, we can bound its

gap from optimality in a straightforward manner:

ℎ(𝑥̃)− ℎ(𝑥*)

ℎ(𝑥*)
≤ ℎ(𝑥̃)−

∑︀
𝑒 ℎ

(𝑖)
𝐿 (𝑒)∑︀

𝑒 ℎ
(𝑖)
𝐿 (𝑒)

=

∑︀
𝑒∈𝐸∖𝑇 (𝑥(𝑖)) ℎ(𝑥̃𝑒)−

∑︀
𝑒∈𝐸∖𝑇 (𝑥(𝑖)) ℎ

(𝑖)
𝐿 (𝑒)∑︀

𝑒∈𝑇 (𝑥(𝑖)) ℎ(𝑥
(𝑖)
𝑒) +

∑︀
𝑒∈𝐸∖𝑇 (𝑥(𝑖)) ℎ

(𝑖)
𝐿 (𝑒)

. (3.9)

As the tight set of the current iterate 𝑥(𝑖) increases, the gap closes to zero.

67

3.3 Implementing the Inc-Fix algorithm

A parametrized increase in the gradient space in the Inc-Fix algorithm (step (9) in Algo-

rithm 1, see (3.10) below) will, in general, result in a movement along a piecewise smooth

curve in the submodular polytope 𝑃 (𝑓), which is non-trivial to compute. In this section,

we show how each maximum possible increase in the gradient space, i.e. step (9), can be

computed with the help of 𝑂(1) parametric submodular function minimizations (SFMs).

This implies a worst-case overall running time of 𝑂(𝑛) parametric SFMs for the Inc-Fix

algorithm. Using properties of convex minimizers over base polytopes, we further improve

the overall running time of the Inc-Fix method to require only 𝑂(𝑛) submodular function

minimizations in Section 3.3.2.

3.3.1 𝑂(𝑛) parametric gradient searches

In this section, we discuss a parametric gradient search method to solve for step (9) of

Inc-Fix (Algorithm 1):

𝛿* = max 𝛿 such that (∇ℎ)−1(∇ℎ(𝑥0) + 𝛿𝜒(𝑀)) ∈ 𝑃 (𝑓), (3.10)

for a given 𝑥0 ∈ 𝑃 (𝑓) and 𝑀 ⊆ 𝐸 is the subset of non-fixed elements with the minimum

partial derivative with respect to 𝑥0 (all elements in 𝑀 have the same partial derivative

value). Recall that ℎ(·) is differentiable, strictly convex and separable. Let 𝑥̄𝛿 correspond

to a vector with gradient 𝛿 over elements in 𝐸, i.e. 𝑥̄𝛿(𝑒) = (ℎ′
𝑒)

−1(𝛿) for 𝑒 ∈ 𝐸. Since ℎ′
𝑒

is a strictly increasing function, 𝑥̄𝛿(𝑒) = (ℎ′
𝑒)

−1(𝛿) increases monotonically with increasing 𝛿

for all 𝑒 ∈ 𝐸. Suppose we were to minimize Bregman divergences 𝐷𝜔(𝑥, 𝑦) corresponding to

uniformly separable mirror maps 𝜔(𝑥) =
∑︀

𝑒𝑤(𝑥𝑒) where 𝑤 : 𝒟𝑤 → R is a strictly-convex

function (see Table 2.2). In this case, ℎ(𝑥) = 𝐷𝜔(𝑥, 𝑦) =
∑︀

𝑒(𝑤(𝑥𝑒)−𝑤(𝑦𝑒)−𝑤′(𝑦𝑒)(𝑥𝑒−𝑦𝑒)),

ℎ′
𝑒(𝑥𝑒) = 𝑤′(𝑥𝑒) − 𝑤′(𝑦𝑒), and thus 𝑥̄𝛿(𝑒) = (𝑤′)−1(𝛿 + 𝑤′(𝑦𝑒)). We give the closed form

68

expressions of 𝑥̄𝛿(𝑒) for popular uniform divergences:

𝑥̄𝛿(𝑒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛿 + 𝑦𝑒 for 𝑤(𝑥) = ‖𝑥‖2/2, 𝐷𝜔(𝑥, 𝑦) =
1
2
‖𝑥− 𝑦‖2,

𝑒𝛿𝑦𝑒 for 𝑤(𝑥) = 𝑥 log 𝑥− 𝑥,𝐷𝑤(𝑥, 𝑦) =
∑︀

𝑒(𝑥𝑒 ln(𝑥𝑒/𝑦𝑒)− 𝑥𝑒 + 𝑦𝑒),

−1/(𝛿 − 1/𝑦𝑒) for 𝑤(𝑥) = − log 𝑥,𝐷𝑤(𝑥, 𝑦) =
∑︀

𝑒

(︀
𝑥𝑒/𝑦𝑒 − log(𝑥𝑒/𝑦𝑒)− 1

)︀
,

𝑒𝛿𝑦𝑒
1−𝑦𝑒+𝑒𝛿𝑦𝑒

for 𝑤(𝑥) = 𝑥 log 𝑥+ (1− 𝑥) log(1− 𝑥),

𝐷𝑤(𝑥, 𝑦) =
∑︀

𝑒(𝑥𝑒 log(𝑥𝑒/𝑦𝑒) + (1− 𝑥𝑒) log(
(1−𝑥𝑒)
(1−𝑦𝑒)

).

In what follows, we are required to find 𝛿 such that
∑︀

𝑒∈𝑆 𝑥̄𝛿(𝑒) = 𝑓(𝑆 ∪ 𝑇) − 𝑓(𝑇), for

𝑆, 𝑇 ⊆ 𝐸. By our assumption that ∇ℎ(𝒟) = R𝐸, we know that these univariate equations

always have a solution. Note that for the squared Euclidean distance,
∑︀

𝑒∈𝑆 𝑥̄𝛿(𝑒) =
∑︀

𝑒∈𝑆(𝛿+

𝑦𝑒), and therefore the solution is simply 𝛿 = 𝑓(𝑆∪𝑇)−𝑓(𝑇)−𝑦(𝑆)
|𝑆| . For the KL-divergence, it is

easy to check that the solution is 𝛿 = log((𝑓(𝑆∪𝑇)−𝑓(𝑇))/𝑦(𝑆)). In general, we know that∑︀
𝑒 𝑥̄𝛿(𝑒) is an increasing function of 𝛿, and therefore one can use binary search or Newton’s

method to find the solution. We will henceforth assume a constant time oracle to solve

equations of the form
∑︀

𝑒∈𝑆 𝑥̄𝛿(𝑒) = 𝑓(𝑆 ∪ 𝑇)− 𝑓(𝑇).

We now discuss how to compute the maximal feasible increase in the gradient space, i.e.

(3.10). Recall that during each iteration of the inner loop in the Inc-Fix algorithm, we

either increase the number of non-fixed elements with the minimum partial derivative value

(i.e., the size of 𝑀), or set at least one more element to be tight, i.e.

𝑇 (𝑥*) ⊃ 𝑇 (𝑥0), where 𝑥* = ∇ℎ−1(∇ℎ(𝑥0) + 𝛿*𝜒(𝑀)).

Using a single submodular function minimization (to compute the maximal minimizer),

one can check if 𝑇 (𝑥0) ∩𝑀 = ∅. If the intersection is not empty, then 𝛿 = 0. Therefore, let

us consider the case when 𝛿* > 0.

Let 𝑥|𝑆 be the vector restricted to elements in 𝑆 and 0 otherwise. We want to find

maximum 𝛿 such that 𝑥0|𝐸∖𝑀 + 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓) given that 𝑥0 ∈ 𝑃 (𝑓). Equivalently, we can

find maximum 𝛿 such that 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 − 𝑥0|𝐸∖𝑀) or

find maximum 𝛿 such that 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 ′), (3.11)

69

for a non-negative submodular function 𝑓 ′ (since 𝑥0|𝐸∖𝑀 ∈ 𝑃 (𝑓)).

One can solve (3.11) as follows: start with a point 𝑥̄𝛿1|𝑀 with 𝛿1 such that the entire

ground set 𝐸 is tight. If the corresponding 𝑥̄𝛿1|𝑀 is feasible for 𝑃 (𝑓 ′), we stop. Otherwise, we

repeatedly find the maximally violated submodular constraint for set 𝑆𝑖 (say) and construct

𝑥̄𝛿𝑖+1
|𝑀 such that 𝑆𝑖 is tight, until we find some 𝑥̄𝛿𝑘 |𝑀 ∈ 𝑃 (𝑓). We refer to this process as

a parametric gradient search and describe it formally in Algorithm 4. Note that step (a)

requires solving univariate equations of the form
∑︀

𝑒∈𝑆 𝑥̄𝛿(𝑒) = 𝑓(𝑆 ∪𝑇)− 𝑓(𝑇) as discussed

above.

Algorithm 4: Parametric Gradient Search
input : non-negative submodular 𝑓 ′, 𝑀 ⊆ 𝐸
output: max 𝛿 : 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 ′)

𝑆0 = 𝐸, 𝑖 = 0;
repeat

𝑖← 𝑖+ 1
(a) 𝛿𝑖 : 𝑥̄𝛿𝑖 |𝑀 (𝑆𝑖−1) = 𝑓 ′(𝑆𝑖−1)

𝑆𝑖 = maximal minimizer of (𝑓 ′ − 𝑥̄𝛿𝑖 |𝑀)
until 𝑓 ′(𝑆𝑖)− 𝑥̄𝛿𝑖 |𝑀 (𝑆𝑖) ≥ 0;
Return 𝛿𝑖

We claim that Algorithm 4 finds maximum 𝛿 in at most 𝑛 iterations, each requiring a

submodular function minimization. Correctness of the algorithm is trivial, since {𝛿𝑖} is a

strictly decreasing sequence and for the last iteration 𝑘, 𝛿 > 𝛿𝑘 would violate the submodular

constraint for set 𝑆𝑘−1. Next, we claim that 𝑘 ≤ 𝑛. As is mentioned above, 𝑥̄𝛿 is an increasing

function of 𝛿. Thus, 𝑓 ′ − 𝑥̄𝛿1|𝑀 ← 𝑓 ′ − 𝑥̄𝛿2|𝑀 · · · ← 𝑓 ′ − 𝑥̄𝛿𝑘 |𝑀 is strong map sequence (refer

to Definition 3 in Chapter 2) for 𝛿1 > 𝛿2 > . . . > 𝛿𝑘. Therefore, the maximal minimizer 𝑆𝑖

of 𝑓 ′ − 𝑥̄𝛿𝑖 |𝑀 contains in the maximal minimizer 𝑆𝑗 of 𝑓 ′ − 𝑥̄𝛿𝑗 |𝑀 for 𝛿𝑖 > 𝛿𝑗 (Lemma 2.3).

This bounds the number of iteration 𝑘 by the size 𝑛 of the ground set.

All of the submodular function minimizations in Algorithm 4 can be computed using a sin-

gle parametric submodular function minimization, for example, using the result of [Nagano,

2007a] that requires 𝑂(𝑛6 + 𝛾𝑛5) running time, where 𝛾 is the time required for a single

submodular function evaluation. Note that it is an open question to adapt the fastest known

strongly polynomial submodular function minimization algorithm of [Lee et al., 2015] to do

parametric minimization.

70

Running time for Inc-Fix using gradient searches Using parametric gradient searches

for each gradient increase in the Inc-Fix algorithm, we get an overall running time of 𝑂(𝑛)

parametric submodular function minimizations. Using the current fastest known parametric

SFM method of [Nagano, 2007a], we get a worst-case running time of 𝑂(𝑛7 + 𝛾𝑛6) for Inc-

Fix. We believe that it should be possible to implement the Inc-Fix algorithm using 𝑂(1)

parametric minimizations since we only increase the values on the elements in a well-defined

way, however, we leave it as an open question (see Chapter 7). We summarize the running

times for the Inc-Fix method in Table 3.3 using different ways of solving the gradient search

subproblem.

3.3.2 𝑂(𝑛) submodular function minimizations

We next discuss a more refined implementation of the Inc-Fix algorithm using 𝑂(𝑛) sub-

modular functions minimizations overall. Note that these minimizations can be solved using

the fastest known strongly polynomial algorithm of [Lee et al., 2015], without requiring to

solve parametric submodular function minimizations.

Consider 𝑥* = argmin𝑥∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑥(𝑒)). Let 𝐹1, 𝐹2, . . . , 𝐹𝑘 be a partition of the ground

set 𝐸 such that ℎ′
𝑒(𝑥

*(𝑒)) = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and 𝑐𝑖 < 𝑐𝑗 for 𝑖 < 𝑗. Let 𝐻𝑠 = 𝐹1 ∪ . . . ∪ 𝐹𝑠

for 𝑠 = 1, . . . , 𝑘. As before, we let 𝑥̄𝛿 be the point such that the partial derivative of each

element is 𝛿, i.e. 𝑥̄𝛿(𝑒) = (ℎ′
𝑒)

−1(𝛿) for 𝑒 ∈ 𝐸. The key observation required to achieve an

𝑂(𝑛) SFM running time for Inc-Fix is an extension of the following lemma from [Nagano,

2007b]. We include its proof here for completeness.

Lemma 3.2 ([Nagano, 2007b]). Consider 𝛿: 𝑐𝑠 ≤ 𝛿 < 𝑐𝑠+1. If 𝑐𝑠 < 𝛿 then 𝐻𝑠 is the unique

minimizer of 𝑓𝛿 := 𝑓 − 𝑥̄𝛿. If 𝛿 = 𝑐𝑠 then 𝐻𝑠−1 is the unique minimal minimizer and 𝐻𝑠 is

the unique maximal minimizer of 𝑓𝛿.

Proof. Suppose 𝑐𝑠 < 𝛿 < 𝑐𝑠+1. As ℎ′
𝑒 is strictly increasing, 𝑥*(𝑒) − 𝑥̄𝛿(𝑒) < 0 if 𝑒 ∈ 𝐻𝑠 and

𝑥*(𝑒)− 𝑥̄𝛿(𝑒) > 0 otherwise. By Theorem 8, we know that 𝑥*(𝐻𝑠) = 𝑓(𝐻𝑠) for all 𝑠. Thus,

for each 𝑋 ⊆ 𝐸, with 𝑋 ̸= 𝐻𝑠, we have

𝑓𝛿(𝑋) =𝑓(𝑋)− 𝑥̄𝛿(𝑋) ≥ 𝑥*(𝑋)− 𝑥̄𝛿(𝑋)

71

= (𝑥* − 𝑥̄𝛿)(𝐻𝑠) + (𝑥* − 𝑥̄𝛿)(𝑋 ∖𝐻𝑠)− (𝑥* − 𝑥̄𝛿)(𝐻𝑠 ∖𝑋)

> 𝑥*(𝐻𝑠)− 𝑥̄𝛿(𝐻𝑠) = 𝑓(𝐻𝑠)− 𝑥̄𝛿(𝐻𝑠) = 𝑓𝛿(𝐻𝑠).

On the other hand, suppose 𝛿 = 𝑐𝑠 holds. Then 𝑒 ∈ 𝐻𝑠−1 if and only if 𝑥*(𝑒)− 𝑥̄𝛿(𝑒) < 0

and 𝑒 ∈ 𝐻𝑠 if and only if 𝑥*(𝑒)− 𝑥̄𝛿(𝑒) ≤ 0. So, 𝐻𝑠−1 and 𝐻𝑠 minimize 𝑓𝛿 and any minimizer

𝑋 satisfies 𝐻𝑠−1 ⊆ 𝑋 ⊆ 𝐻𝑠.

We prove an extension of the above lemma. This will be useful in each iteration 𝑖 + 1

after we have obtained 𝑥(𝑖)|𝐻𝑖
= 𝑥*|𝐻𝑖

, and we want to find the next increase up to 𝑥(𝑖+1) in

Algorithm 1.

Lemma 3.3. Consider 𝑖 ≤ 𝑠 and 𝛿 : 𝑐𝑠 ≤ 𝛿 < 𝑐𝑠+1. If 𝑐𝑠 < 𝛿 then 𝐻𝑠 is the unique

minimizer of 𝑓𝛿 := 𝑓 −𝑥*|𝐻𝑖
− 𝑥̄𝛿|𝐸∖𝐻𝑖

. Otherwise, if 𝛿 = 𝑐𝑠 then 𝐻𝑠−1 is the unique minimal

minimizer and 𝐻𝑠 is the unique maximal minimizer of 𝑓 − 𝑥*|𝐻𝑖
− 𝑥̄𝛿|𝐸∖𝐻𝑖

.

The proof is along similar lines as Lemma 3.2, as we show here.

Proof. For 𝑐𝑠 < 𝛿 < 𝑐𝑠+1, we know that 𝑥*(𝑒) − 𝑥̄𝛿|𝐸∖𝐻𝑖
(𝑒) > 0 for 𝑒 ∈ 𝐸 ∖ 𝐻𝑠, and

𝑥*(𝑒)− 𝑥̄𝛿|𝐸∖𝐻𝑖
(𝑒) ≤ 0 for 𝑒 ∈ 𝐻𝑠 ∩ (𝐸 ∖𝐻𝑖). Consider any 𝑋 ⊆ 𝐸, such that 𝑋 ̸= 𝐻𝑠.

𝑓𝛿(𝑋) = 𝑓(𝑋)− 𝑥*|𝐻𝑖
(𝑋)− 𝑥̄𝛿|𝐸∖𝐻𝑖

(𝑋)

≥ 𝑥*(𝑋)− 𝑥*(𝑋 ∩𝐻𝑖)− 𝑥̄𝛿(𝑋 ∩ (𝐸 ∖𝐻𝑖))

=
∑︁

𝑒∈𝑋∖𝐻𝑠

(𝑥*(𝑒)− 𝑥̄𝛿(𝑒)) +
∑︁

𝑒∈(𝑋∖𝐻𝑖)∩𝐻𝑠

(𝑥*(𝑒)− 𝑥̄𝛿(𝑒)). (3.12)

However, the value of 𝑓𝛿(𝐻𝑠) can be broken down as follows -

𝑓𝛿(𝐻𝑠) = 𝑓(𝐻𝑠)− 𝑥*|𝐻𝑖
(𝐻𝑠)− 𝑥̄𝛿|𝐸∖𝐻𝑖

(𝐻𝑠)

= 𝑥*(𝐻𝑠)− 𝑥*(𝐻𝑖)− 𝑥̄𝛿(𝐻𝑠 ∩ (𝐸 ∖𝐻𝑖))

=
∑︁

𝑒∈𝐻𝑠∖(𝑋∖𝐻𝑖)

(𝑥*(𝑒)− 𝑥̄𝛿(𝑒)) +
∑︁

𝑒∈𝐻𝑠∩(𝑋∖𝐻𝑖)

(𝑥*(𝑒)− 𝑥̄𝛿(𝑒)). (3.13)

Comparing (3.12) and (3.13), we get that 𝑓𝛿(𝑋) ≥ 𝑓𝛿(𝐻𝑠) and the inequality is strict if

𝛿 < 𝑐𝑠+1 and 𝑋 ∖𝐻𝑠 ̸= ∅.

72

Algorithm 5: Inc-Fix using 𝑂(𝑛) submodular function minimizations
input : 𝑓 : 2𝐸 → R, ℎ =

∑︀
𝑒∈𝐸 ℎ𝑒, and a valid 𝑥(0) ∈ 𝑃 (𝑓)

output: 𝑥* = argmin𝑧∈𝐵(𝑓)

∑︀
𝑒 ℎ𝑒(𝑧(𝑒))

3 𝑁0 = 𝐸, 𝑖 = 0, 𝒞 = {∅, 𝐸}
... same as Algorithm 1, except implement the inner loop as follows...

7 while 𝑇 (𝑥) ∩𝑀 = ∅ do // Inner loop starts
8 𝜖 = min𝑒∈𝑁𝑖−1∖𝑀 ℎ′

𝑒(𝑥𝑒)

9.a Let 𝐻 be the smallest set in 𝒞 that strictly contains 𝐸 ∖𝑁𝑖−1

9.b Set 𝛿𝐻 : 𝑥̄𝛿𝐻 (𝑀) = 𝑓(𝐻)− 𝑓(𝐸 ∖𝑁𝑖−1)
9.c (𝛿, 𝑆1, . . . , 𝑆𝑘𝑖) = ParametricGradientSearch′(𝑓 − 𝑥|𝐸∖𝑁𝑖−1

,𝑀,min{𝜖, 𝛿𝐻})
9.d 𝒞 ← 𝒞 ∪ {𝑆1, . . . , 𝑆𝑘𝑖

}
10.e 𝑥(𝑒)← 𝑥̄𝛿(𝑒) for 𝑒 ∈𝑀

11 𝑀 ← argmin𝑒∈𝑁𝑖−1
ℎ′
𝑒(𝑥𝑒)

end
... where ParametricGradientSearch′ (Algorithm 6) is a slight modification of Algorithm 4.

Algorithm 6: ParametricGradientSearch′

input : 𝑓 ′ : 2𝐸 → R, 𝑀 ⊆ 𝐸 and 𝛿1 ∈ R
output: (𝛿𝑘, 𝑆1, . . . , 𝑆𝑘): 𝛿𝑘 is the maximum 𝛿 ≤ 𝛿1 such that 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 ′)

𝑖 = 1
𝑆1 = maximal minimizer of 𝑓 ′ − 𝑥̄𝛿1 |𝑀
while 𝑓 ′(𝑆𝑖)− 𝑥̄𝛿𝑖 |𝑀 (𝑆𝑖) < 0 do

𝛿𝑖+1 : 𝑥̄𝛿𝑖+1
|𝑀 (𝑆𝑖) = 𝑓 ′(𝑆𝑖)

𝑆𝑖+1 = maximal minimizer of (𝑓 ′ − 𝑥̄𝛿𝑖+1 |𝑀)
𝑖← 𝑖+ 1

end
Return (𝛿𝑖, 𝑆1, . . . , 𝑆𝑖)

Consider the optimal solution 𝑥* = argmin𝑥∈𝐵(𝑓) ℎ(𝑥) and let {𝐹1, 𝐹2, . . . , 𝐹𝑘} be a par-

tition of the ground set 𝐸 such that ℎ′
𝑒(𝑥

*
𝑒) = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and 𝑐𝑖 < 𝑐𝑗 for 𝑖 < 𝑗. In the

Inc-Fix algorithm, at the end of iteration 𝑖 of the main loop, we know that we have fixed

elements in 𝐻𝑖 = 𝐹1∪ . . .∪𝐹𝑖. When doing a parametric gradient search to compute the next

feasible increase, every submodular function minimization of the form 𝑓 − 𝑥*|𝐻𝑖
− 𝑥̄𝛿|𝐸∖𝐻𝑖

helps us either check for feasibility up to the second highest gradient level or discover some

prefixes of the optimal partition {𝐹1, . . . , 𝐹𝑘}, using Lemma 3.3. Thus we can re-use the

information obtained from parametric gradient search in an iteration of the Inc-Fix algo-

rithm in future iterations as well. This helps prove a linear bound on the total number of

submodular function minimizations required in Inc-Fix.

We give the complete description of Inc-Fix while maintaining known level sets 𝐻𝑠 =

𝐹1 ∪ . . . 𝐹𝑠 and using them in future computations, in Algorithm 5. We start the algorithm

with 𝒞 = {∅, 𝐸}, the trivial level sets in the optimal partition, that we know of. The

73

algorithm proceeds by maintaining the set 𝑀 of elements with the minimum partial derivative

value that are not fixed at the start of iteration 𝑖, i.e. 𝑀 ⊆ 𝑁𝑖−1 (with 𝑁0 = 𝐸). Inc-Fix

increases the partial derivative value of elements in 𝑀 either up to the second highest partial

derivative in 𝑁𝑖−1 (i.e. line 8, 𝜖) or the highest partial derivative while maintaining feasibility

in 𝑃 (𝑓) using a parametric gradient search, whichever increase is smaller. We compute the

partial derivative value 𝛿𝐻 required on elements in 𝑀 such that the next known level set

𝐻 is tight (𝐻 ∈ 𝒞 such that it strictly contains the current fixed set 𝐸 ∖ 𝑁𝑖−1 = 𝐻𝑖−1).

Then a parametric gradient search using Algorithm 6 is performed, starting with the partial

derivative value min{𝜖, 𝛿𝐻}.

Algorithm 6 is the same as Algorithm 4 except that it starts with a given partial

derivative value 𝛿1 and returns the entire sequence of minimizers found during the

parametric search. Given a non-negative submodular function 𝑓 ′, a subset 𝑀 ⊆ 𝐸 and

a partial derivative value 𝛿1, it returns the sequence of maximal minimizers 𝑆1, . . . , 𝑆𝑘

obtained by first minimizing 𝑓 ′− 𝑥̄𝛿1|𝑀 . It also returns 𝛿𝑘 that is the maximum 𝛿 ≤ 𝛿1

such that 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 ′).

We call Algorithm 6 to do a parametric gradient search with submodular function 𝑓 ′ =

𝑓 − 𝑥|𝐸∖𝑁𝑖−1
, over the set 𝑀 of non-fixed elements with minimum partial-derivative value

as described above, starting with 𝛿1 = min{𝜖, 𝛿𝐻}. It returns the sequence of minimizers

𝑆1, . . . , 𝑆𝑘𝑖 maximum 𝛿 ≤ min{𝜖, 𝛿𝐻} such that 𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓−𝑥|𝐸∖𝑁𝑖−1
). One of the following

cases will hold:

(i) 𝑥̄𝛿1|𝑀 ∈ 𝑃 (𝑓−𝑥|𝐸∖𝑁𝑖−1
): In this case, the parametric gradient search will return 𝛿 = 𝛿1

and only one set 𝑆1 that is the maximal minimizer of 𝑓 −𝑥|𝐸∖𝑁𝑖−1
− 𝑥̄𝛿1|𝑀 (𝑘𝑖 = 1). By

Lemma 3.3, we know that 𝑆1 is a level set in the optimal solution. If 𝑆1 = 𝐸 ∖ 𝑁𝑖−1,

then 𝑆1 ∩𝑀 = ∅. In this case, we only update 𝑀 and continue the inner loop (raising

elements to the second highest partial derivative did not increase the size of the tight

set). Otherwise, we discovered the next level set 𝑆1 ⊃ 𝐸 ∖𝑁𝑖−1. In this case, we update

𝑀 , fix elements in 𝑆1, add 𝑆1 to 𝒞 and break the inner loop.

(ii) 𝑥̄𝛿1|𝑀 /∈ 𝑃 (𝑓−𝑥|𝐸∖𝑁𝑖−1
): In this case, the parametric gradient search returns a sequence

of minimizers 𝑆1, . . . , 𝑆𝑘𝑖 (recall 𝑆1 ⊃ 𝑆2 ⊃ . . . 𝑆𝑘𝑖) and the highest 𝛿 (< 𝛿1) such that

74

𝑥̄𝛿|𝑀 ∈ 𝑃 (𝑓 −𝑥|𝐸∖𝑁𝑖−1
). We know that 𝑆1 ⊆ 𝐻 since 𝐻 is the smallest known level set

of the optimal solution that strictly contains 𝐸 ∖ 𝑁𝑖−1. Note that each of 𝑆2, . . . , 𝑆𝑘𝑖

(and 𝑆1 as well if 𝑆1 ̸= 𝐻) are new level sets of the optimal solution that we have

discovered from this computation (using Lemma 3.3), and therefore we can add these

to 𝒞. We thus increase the value of elements 𝑒 ∈ 𝑀 to 𝑥̄𝛿(𝑒), update 𝑀 , and break

the inner loop as the maximal tight set 𝑆𝑘𝑖 ∩𝑀 ̸= ∅.

Since we record the discovered level sets 𝒞 in the optimal solution, we can start subsequent

parametric gradient searches with a much tighter bound on partial derivative values and as a

result provide a linear bound on the overall number of submodular function minimizations.

Running time The number of submodular function minimizations that result in only

increasing the gradient level to the second highest partial derivative value while not fixing

any new elements is at most 𝑛 (case (i) when 𝑆1 = 𝐸 ∖ 𝑁𝑖−1). In every other scenario, the

tight set increases. We get either 𝑆1 = 𝐻 or 𝑆1 ⊂ 𝐻 as 𝛿 ≤ 𝛿𝐻 . The former can happen at

most 𝑛 times (the maximum number of possible level sets). In the latter case when 𝑆1 ⊂ 𝐻,

we discover new level sets 𝑆1, . . . , 𝑆𝑘𝑖 , where all of the sets were not known to be prefixes

of the optimal partition before this computation. Thus, across all the iterations of Inc-

Fix we know that
∑︀

𝑖 𝑘𝑖 ≤ 𝑛, thereby providing an overall linear bound on the number of

submodular function minimizations required.

Updating the bounds on the optimal value During a parametric gradient search,

suppose we minimize 𝑓 −𝑥*|𝐻𝑖
− 𝑥̄𝛿|𝐸∖𝐻𝑖

and obtain 𝐻𝑠 as the maximal minimizer. We know

from Lemma 3.3 that the elements in 𝐸 ∖𝐻𝑠 must have a partial derivative greater than 𝛿

in the optimal solution, and elements in 𝐻𝑠 can have the corresponding partial derivative at

most 𝛿. Thus, in each iteration of the parametric gradient search, the lower bound 𝑙𝑒, and

the upper bound 𝑢𝑒, on each 𝑒 ∈ 𝐻 can be updated as follows:

𝑙𝑛𝑒𝑤𝑒 = max{𝑙𝑜𝑙𝑑𝑒 , 𝑥̄𝛿(𝑒)}, for 𝑒 ∈ 𝐸 ∖𝐻𝑠,

𝑢𝑛𝑒𝑤
𝑒 = min{𝑢𝑜𝑙𝑑

𝑒 , 𝑥̄𝛿(𝑒)}, for 𝑒 ∈ 𝐻𝑠.

75

3.3.3 Running time for Inc-Fix

In Sections 3.3.1 and 3.3.2, we discussed two ways of implementing the Inc-Fix algorithm.

One way requires 𝑂(𝑛) parametric SFM and the other requires 𝑂(𝑛) SFMs by amortizing

the computation across the iterations of the Inc-Fix algorithm. In Table 3.3, we document

the running times for the state-of-the-art strongly-polynomial (parametric) SFM algorithms

that can be used to implement these approaches. The algorithms of [Iwata and Orlin, 2009],

[Orlin, 2009] and [Fleischer and Iwata, 2003] can be adapted to do parametric SFM using

the results of [Nagano, 2007a]. However, it is an open question to show parametric function

minimization using the algorithm of [Lee et al., 2015]. As is clear from Table 3.3, the current

best running time of the Inc-Fix algorithm is 𝑂(𝑛5 log𝑂(1) 𝑛+ 𝛾𝑛4 log2 𝑛).

Algorithms for SFM Running Time Inc-Fix Time
[Iwata and Orlin, 2009] 𝑂(𝑛6 + 𝛾𝑛5) 𝑂(𝑛7 + 𝛾𝑛6)

[Lee et al., 2015] 𝑂(𝑛4 log𝑂(1) 𝑛+ 𝛾𝑛3 log2 𝑛) 𝑂(𝑛5 log𝑂(1) 𝑛+ 𝛾𝑛4 log2 𝑛)

Algorithms for PSFM
[Nagano, 2007a] 𝑂(𝛾(𝑛5 + 𝑘𝑛3) + 𝑛6) 𝑂(𝛾(𝑛6 + 𝑘𝑛4) + 𝑛7)

Table 3.3: Running times for the Inc-Fix method using different algorithms for submodular function
minimization. In the running time for [Nagano, 2007a], 𝑘 is the length of the strong map sequence.

One could potentially use faster polynomial or pseudopolynomial SFM algorithms (for

e.g. [Chakrabarty et al., 2016]) to do these function minimizations. Recall that we minimize

repeatedly submodular functions of the form 𝑓−𝑥̄𝛿 to compute the maximum feasible increase

in the gradient space. Therefore, in order to get a meaningful bound on the running time

of Inc-Fix using (pseudo) polynomial SFM algorithms, one would need to bound the size

of 𝑓 − 𝑥̄𝛿 (or perhaps find another implementation of the Inc-Fix method). Further, note

that we also require the computation of maximal minimizers in the Inc-Fix algorithm. One

way to compute the maximal minimizer of an integral submodular function 𝑓 is to minimize

instead 𝑓 ′(𝑆) = 𝑓(𝑆) − 𝜖|𝑆| for 𝜖 < 1/𝑛 (resulting in an increase in the size by a factor of

𝑛). Then, the unique minimizer of 𝑓 ′ is the maximal minimizer for 𝑓 . Since the running

time strongly polynomial SFM algorithms does not dependent on the size of the submodular

function, these computations can be done at no additional cost. For combinatorial algorithms

that maintain the certificate of optimality as a convex combination of bases in 𝐵𝑒𝑥𝑡(𝑓) (see

Theorem 1 in Chapter 2), one could also use the classical result of [Bixby et al., 1985] to

76

compute the maximal minimizer at an additional cost of 𝑂(𝑛3𝛾) time.

Comparison with Related Work In 1980, Fujishige gave the monotone algorithm, to

find the minimum norm point, i.e., min𝑥∈𝐵(𝑓)

∑︀
𝑒∈𝐸 𝑥2

𝑒/𝑤𝑒 over the submodular base poly-

tope 𝐵(𝑓) and 𝑤 ∈ R𝐸
>0 [Fujishige, 1980]. This algorithm starts with 𝑥(0) = 0 and iteratively

moves proportional to 𝑤𝑁 where 𝑁 is the set of non-fixed elements till it hits a tight con-

straint. Inc-Fix can be viewed as a generalization of this method.

In 1991, Fujishige and Groenevelt developed a decomposition algorithm, for minimizing

separable convex functions ℎ(·) over submodular base polytopes [Groenevelt, 1991] (the ex-

act setting that we consider). This algorithm starts by finding any vector 𝑧 ∈ R𝐸
+ that sets

𝑧(𝐸) = 𝑓(𝐸) and minimizes ℎ(𝑧). If 𝑧 is feasible, then 𝑧 is the minimizer. Otherwise, the

problem is decomposed into two subproblems: one with the submodular function restricted

to the maximally violated constraint 𝑆 for 𝑧 and the other with the contracted submod-

ular function over 𝐸 ∖ 𝑆. This process repeats recursively, until each subproblem returns

the optimal solution. There has been a large volume of work since 1991 to speed up the

decomposition algorithm and show rationality of its solutions for certain convex functions

(for e.g. see [Nagano and Aihara, 2012]). The current best known running times are 𝑂(𝑛)

submodular function minimizations (along with maximal minimizer computation) or a single

parametric submodular function minimization [Nagano, 2007b]. Thus, Inc-Fix has the same

worst-case running time as the decomposition algorithm since there exist faster methods for

submodular function minimization (compared to parametric SFM).

The above mentioned algorithms are exact, under infinite precision arithmetic. However,

general convex optimizations can also be for approximately minimizing separable convex

functions (in fact, even non-separable convex functions) over submodular (base) polytopes.

One such method is another first-order constrained optimization method, Frank-Wolfe [Frank

and Wolfe, 1956], that does not require the computation of projections. Frank-Wolfe is an

iterative procedure that considers, in each step, a linear approximation of the convex function

and moves towards the minimizer by a small step. We review the vanilla Frank-Wolfe method

in Section 2.2.2 and provide useful references for its variants. Each step of the Frank-

Wolfe method only requires a linear optimization, which is quite inexpensive for submodular

77

polytopes (only 𝑛𝛾 + 𝑛 log 𝑛 time, where 𝛾 is the time for a single function evaluation) thus

making Frank-Wolfe method an attractive way to tradeoff running time for accuracy when

Inc-Fix requires the full machinery of the oracle-model submodular function minimization.

The rate of convergence of Frank-Wolfe however, depends on the curvature9 𝐶ℎ of ℎ(·), and

𝑂(𝐶ℎ/𝜖) iterations are required to achieve an optimality gap of 𝑂(𝜖). Moreover, as we will

see in the next section, for cardinality-based submodular polytopes, we can obtain running

times that are competitive with the Frank-Wolfe method while computing exact solutions.

3.4 Cardinality-based submodular functions

A submodular function is cardinality-based if 𝑓(𝑆) = 𝑔(|𝑆|) (𝑆 ⊆ 𝐸) for some concave

function 𝑔 : N→ R (e.g., corresponding to the simplex, k-sets, permutations, in Table 2.1).

We use the notation 𝑃 (𝑔) and 𝐵(𝑔) to refer to the cardinality-based submodular polytope

and the base polytope corresponding to the concave function 𝑔.

Figure 3-3: Different choices of concave functions 𝑔(·), such that 𝑓(𝑆) = 𝑔(|𝑆|), result in different
cardinality-based polytopes; (a) permutations if 𝑓(𝑆) =

∑︀|
𝑠=1 𝑆|(𝑛−1+ 𝑠), (b) probability simplex

if 𝑓(𝑆) = 1, (c) k-subsets if 𝑓(𝑆) = min{𝑘, |𝑆|}.

Define 𝑔′(𝑖) = min𝑗≥𝑖 𝑔(𝑗) and note that 𝑔′(·) is non-decreasing. It is easy to check that

𝑃 (𝑔) = {𝑥 ∈ R𝐸
+ | 𝑥(𝑆) ≤ 𝑔(|𝑆|) ∀𝑆 ⊆ 𝐸} = 𝑃 (𝑔′). Thus, without loss of generality, we

9Curvature 𝐶ℎ := sup𝑥,𝑠∈𝒟,𝛾∈[0,1],𝑦=𝑥+𝛾(𝑠−𝑥)
2
𝛾2 (ℎ(𝑦)− ℎ(𝑥)− ⟨𝑦 − 𝑥,∇ℎ(𝑥)⟩) where 𝒟 is the domain of

the convex function ℎ(·) (the convex function to be minimized). Refer to Section 2.2.2 for more details.

78

can assume that the concave function 𝑔(·) itself is non-decreasing. Further, we assume that

𝑔(0) ≥ 0 so that 𝑃 (𝑔) (as well as the base polytope 𝐵(𝑔)) is non-empty. In this section, we

will present an efficient adaptation of the Inc-Fix algorithm to compute projections onto

cardinality-based submodular base polytopes 𝐵(𝑔) under divergences arising from uniformly

separable mirror maps, i.e.

(P1)′ : min
𝑥∈𝐵(𝑔)

∑︁
𝑒∈𝐸

𝑤(𝑥𝑒)−
∑︁
𝑒∈𝐸

𝑤(𝑦𝑒)−
∑︁
𝑒∈𝐸

𝑤′(𝑦𝑒)(𝑥𝑒 − 𝑦𝑒). (3.14)

Recall that we defined 𝑥̄𝛿(𝑒) = (ℎ′
𝑒)

−1(𝛿) that is the point corresponding to a gradient

value of 𝛿, and in the case of uniform divergences 𝑥̄𝛿(𝑒) = (𝑤′)−1(𝛿 + 𝑤′(𝑦𝑒)). We first show

that projection of any constant vector 𝑐𝜒(𝐸) has a closed form expression, for any choice of

the cardinality-based submodular function 𝑓 and any uniformly separable mirror map.

Lemma 3.4. Consider a cardinality-based submodular function 𝑓 : 𝑓(𝑆) = 𝑔(|𝑆|) (𝑆 ⊆ 𝐸)

for some concave function 𝑔 with 𝑔(0) ≥ 0. Then, the projection of a constant vector 𝑦 =

𝑐𝜒(𝐸) ∈ R𝐸 onto 𝐵(𝑔) under the Bregman divergence of any uniform separable mirror map

𝜔(𝑥) =
∑︀

𝑒∈𝐸 𝑤(𝑥(𝑒)) is 𝑔(|𝐸|)
|𝐸| 𝜒(𝐸).

Proof. Consider 𝛿* = max 𝛿 : 𝑥̄𝛿 ∈ 𝑃 (𝑔). By definition of 𝛿*, we get 𝑇 (𝑥̄𝛿*) ̸= ∅. This

in turn implies that 𝐸 is tight on 𝑥̄𝛿* since the function is cardinality-based and 𝑥̄𝛿*(𝑒) =

(𝑤′)−1(𝛿*+ 𝑐) for all 𝑒 ∈ 𝐸. Since 𝐵(𝑔) ̸= ∅, we have 𝑥̄𝛿*(𝐸) = 𝑔(|𝐸|)⇒ 𝑥̄𝛿*(𝑒) = 𝑔(|𝐸|)/|𝐸|

for all 𝑒 ∈ 𝐸. Finally, using Theorem 8, we have that 𝑥̄𝛿* = argmin𝑧∈𝐵(𝑔) 𝐷𝜔(𝑧, 𝑦).

An alternate proof of the above lemma is the following: observe first that the minimizer

𝑥* is unique since the objective function is strictly convex. Next, since the objective function

is symmetric, all 𝑥*
𝑒 are equal (since any permutation of them would also give an optimum

solution). The only point in 𝐵(𝑔) with all components equal is given by 𝑥𝑒 = 𝑔(|𝐸|)/|𝐸|

(since 𝑥(𝐸) = 𝑔(|𝐸|)). In other words, given a cardinality-based submodular polytope,

the projection of the constant vector 𝑐𝜒(𝐸) with respect to the Bregman divergence of any

uniform mirror map is the same. However, in general, the projected vectors can be very

different depending on the choice of the mirror map. To give an example, we constructed

eight different concave functions 𝑔(·) by sampling 𝑘 ∈ [0, 1]100 from different probability

79

Figure 3-4: Squared Euclidean, entropic, logistic and Itakura-Saito Bregman projections of the
(dotted) vector 𝑦 onto the cardinality-based submodular polytopes given by different randomly
selected concave functions 𝑔(·). We refer to the corresponding projected vector in each case by 𝑥.
The threshold function is of the form 𝑔(𝑖) = min{𝛼𝑖, 𝜏} constructed by selecting a slope 𝛼 and a
threshold 𝜏 both uniformly at random.

distributions, sorting them as 𝑘1 ≥ 𝑘2 ≥ . . . 𝑘100, and setting 𝑔(0) = 0, 𝑔(𝑠) =
∑︀𝑠

𝑖=1 𝑘𝑠.

We also sampled a vector 𝑦 ∈ [0, 1]100 from the uniform distribution on [0,1], and sorted

the elements of 𝑦 to be in decreasing order (for illustration purposes). We then computed

projections (denoted by 𝑥 ∈ R100) of the sorted 𝑦 vector onto cardinality-based polytopes

corresponding to each of the concave functions 𝑔(·). Figure 3-4 illustrates the values of

the projected elements (ordered according to the sorted 𝑦 vector) corresponding to different

divergences.

3.4.1 Card-Fix algorithm

We next discuss a modification of the Inc-Fix algorithm to solve problem P1′ (3.14). Since

it relies on properties of cardinality-based polytopes, we call the method Card-Fix. Let

𝜔(𝑥) =
∑︀

𝑒∈𝐸 𝑤(𝑥(𝑒)) be a mirror map where 𝑤 : 𝒟𝑤 → R is strongly convex. We want to

minimize the function ℎ(𝑥) := 𝐷𝜔(𝑥, 𝑦) over 𝑥 ∈ 𝐵(𝑔) for some 𝑦 ∈ R𝐸 with 𝑦(𝑒) ∈ 𝒟𝑤.

80

We can simplify the conditions on the convex function in the Inc-Fix algorithm to be the

following: (i) [0, 𝑔(1)] ⊆ 𝒟𝑤 (i.e. 𝑃 (𝑔) must be contained in the closure of the domain of ℎ),

(ii) 𝑔(𝑛)/𝑛 ∈ 𝒟𝑤 (i.e., 𝐵(𝑔) must have a non-empty intersection with the domain of ℎ), and

(iii) 𝑤′(𝒟𝑤) = R (i.e., image of the gradients of ℎ must be R).

Similar to the Inc-Fix algorithm, we start Card-Fix with 𝑥(0) = 0 or 𝑥(0) = (∇𝜔)−1(𝛿+

𝜔(𝑦)) ∈ 𝑃 (𝑔). Note that if 0 ∈ 𝒟𝑤, then a valid starting point is 𝑥(0) = 0. Otherwise, since

𝑤′(𝒟𝑤) = R, we know that lim𝛿→−∞(𝑤′)−1(𝛿 +𝑤′(𝑦(𝑒))) = 0. Therefore, there always exists

𝛿 < 0 such that 𝑥(0) = (∇𝜔)−1(𝛿 + 𝜔(𝑦)) ∈ 𝑃 (𝑔).

We sort the elements in 𝐸 as 𝑒1, 𝑒2, . . . , 𝑒𝑛 such that 𝑦(𝑒𝑠) > 𝑦(𝑒𝑡) whenever 𝑠 < 𝑡

(breaking ties arbitrarily). The key observation that helps in speeding up the Inc-Fix

algorithm is that whenever the elements are increased to a gradient value in the Inc-Fix

algorithm to obtain an iterate 𝑥(𝑖), 𝑥(𝑖)(𝑒𝑠) ≥ 𝑥(𝑖)(𝑒𝑡) for 𝑠 < 𝑡. Since the polytope is

cardinality-based, an efficient way to check for feasibility in 𝑃 (𝑔) is to check if the sum of

the highest 𝑘 elements is less than 𝑔(𝑘) for each 1 ≤ 𝑘 ≤ 𝑛. We show that each gradient

increase allows the elements to maintain the decreasing order in their values, and therefore

we only need to check for at most 𝑛 constraints for feasibility without requiring to sort

the elements after each increase in the gradient space. This helps achieve the speed up in

the running time to 𝑂(𝑛(log 𝑛 + 𝑛)). We give the complete description of the Card-Fix

algorithm in Algorithm 7. The maximal tight set is simply a prefix of the ordered elements

(𝑒1, . . . , 𝑒𝑡) as 𝑥(𝑖)(𝑒𝑢) ≥ 𝑥(𝑖)(𝑒𝑣) for 𝑢 < 𝑣 and is maintained using the index 𝑡 (Lemma 3.6).

Note that for an arbitrary 𝑘, one can compute 𝜖𝑘 in step (8) of Algorithm 7 by solving a

univariate (often non-linear) equation. We discuss the form of these non-linear equations for

the previously mentioned set of divergences. For squared Euclidean distance, 𝑥𝛿(𝑒) = 𝛿+ 𝑦𝑒,

thus 𝜖𝑘 can be computed using a closed-form expression:

𝑘∑︁
𝑗=𝑡+1

(𝜖𝑘 + 𝑦(𝑒𝑗)) = 𝑔(𝑘)− 𝑔(𝑡)⇒ 𝜖𝑘 =
𝑔(𝑘)− 𝑔(𝑡)−

∑︀𝑘
𝑗=𝑡+1 𝑦(𝑒𝑗)

𝑘 − 𝑡
.

81

Algorithm 7: Card-Fix
input : 𝑓(𝑆) = 𝑔(|𝑆|) for 𝑆 ⊆ 𝐸, 𝑔 non-decreasing and concave, 𝑔(0) ≥ 0, 𝜔(𝑥) =

∑︀
𝑒 𝑤(𝑥(𝑒)),

𝑦 ∈ R𝐸 , and 𝑥(0) ∈ 𝑃 (𝑔)
output: 𝑥* = argmin𝑧∈𝐵(𝑔) 𝐷𝜔(𝑧, 𝑦)

3 Sort elements in 𝐸 as {𝑒1, 𝑒2, . . . , 𝑒𝑛} such that 𝑦(𝑒𝑠) > 𝑦(𝑒𝑡) whenever 𝑠 < 𝑡.
4 𝑖 = 0, 𝑡 = 0
5 repeat
6 𝑖← 𝑖+ 1
7 for 𝑘 ∈ {𝑡+ 1, . . . , 𝑛}:
8 Set 𝜖𝑘 :

∑︀𝑘
𝑗=𝑡+1 𝑥̄𝜖𝑘(𝑒𝑗) = 𝑔(𝑘)− 𝑔(𝑡)

9 𝜖(𝑖) = min𝑡+1≤𝑘≤𝑛 𝜖𝑘; // maximal feasible increase

10 𝑥(𝑖)(𝑒)←
{︂

𝑥(𝑖−1)(𝑒𝑗) for 𝑗 ≤ 𝑡,
max{𝑥̄𝜖(𝑖)(𝑒𝑗), 𝑥

(𝑖−1)(𝑒𝑗)} for 𝑗 > 𝑡

11 𝑡 = max{𝑘 | 𝑡+ 1 ≤ 𝑘 ≤ 𝑛, 𝜖𝑘 = 𝜖(𝑖)} ; // bookkeeping maximal tight set
until 𝑡 = 𝑛;

13 Return 𝑥* = 𝑥(𝑖).

For minimizing KL-divergence, we have 𝑥𝛿(𝑒) = 𝑒𝛿𝑦𝑒, thus step (8) reduces to -

𝑘∑︁
𝑗=𝑡+1

𝑒𝜖𝑘𝑦(𝑒𝑗) = 𝑔(𝑘)− 𝑔(𝑡)⇒ 𝑒𝜖𝑘 =
𝑔(𝑘)− 𝑔(𝑡)∑︀𝑘

𝑗=𝑡+1 𝑦(𝑒𝑗)
.

However, this computation becomes more involved for Itakura-Saito divergence and the

logistic loss. For the former,

𝑘∑︁
𝑗=𝑡+1

−1/(𝜖𝑘 − 1/𝑦(𝑒𝑗)) = 𝑔(𝑘)− 𝑔(𝑡) (3.15)

and for logistic loss, we have

𝑘∑︁
𝑗=𝑡+1

𝑒𝜖𝑘𝑦𝑒𝑗
1− 𝑦𝑒𝑗 + 𝑒𝜖𝑘𝑦𝑒𝑗

= 𝑔(𝑘)− 𝑔(𝑡). (3.16)

Note that for both (3.15) and (3.16), the expressions on the left hand side are strictly

increasing functions of 𝜖𝑘. Thus, 𝜖𝑘 can be found by using methods like binary search or

Newton’s algorithm. We assume a constant time oracle for solving these equations (as in the

more general setting of Inc-Fix).

We now give the main theorem about the correctness of the Card-Fix algorithm.

Theorem 10. Consider a cardinality-based submodular function corresponding to a non-

82

decreasing concave function 𝑔 with 𝑔(0) ≥ 0. Let 𝜔(𝑥) =
∑︀

𝑒∈𝐸 𝑤(𝑥(𝑒)) be a mirror map

where 𝑤 : 𝒟𝑤 → R is strongly convex. We assume that (i) [0, 𝑔(1)] ⊆ 𝒟𝑤, (ii) 𝑔(𝑛)/𝑛 ∈ 𝒟𝑤

and (iii) 𝑤′(𝒟𝑤) = R. Then, given 𝑦 ∈ R𝐸 with 𝑦(𝑒) ∈ 𝒟𝑤 for all 𝑒 ∈ 𝐸, the output of

Card-Fix algorithm is 𝑥* = argmin𝑧∈𝐵(𝑔) 𝐷𝜔(𝑧, 𝑦).

The Card-Fix algorithm can be interpreted as a simplified version of the Inc-Fix al-

gorithm, that exploits the properties of cardinality-based submodular functions to compute

parametric gradient searches efficiently. However, instead of relying on the correctness of

Inc-Fix, we give an independent proof of correctness. Before we prove Theorem 10, we

discuss some useful lemmas in order to simplify the exposition of the main proof. Recall

that since we are minimizing ℎ(𝑥) = 𝐷𝜔(𝑥, 𝑦), we have that ℎ′
𝑒(𝑥𝑒) = 𝑤′(𝑥𝑒)− 𝑤′(𝑦𝑒).

Lemma 3.5. For 𝑒𝑠, 𝑒𝑡 ∈ 𝐸, if 𝑦(𝑒𝑠) > 𝑦(𝑒𝑡) then 𝑥̄𝛿(𝑒𝑠) > 𝑥̄𝛿(𝑒𝑡) for any 𝛿. Further, if

𝑥(𝑒𝑠) > 𝑥(𝑒𝑡) and ℎ′
𝑠(𝑥𝑒𝑠) = ℎ′

𝑡(𝑥𝑒𝑡) then 𝑥̄𝛿(𝑒𝑠) > 𝑥̄𝛿(𝑒𝑡) for arbitrary 𝛿.

Proof. If 𝑦(𝑒𝑠) > 𝑦(𝑒𝑡), then 𝑥̄𝛿(𝑒𝑠) = (𝑤′)−1(𝛿 + 𝑦(𝑒𝑠)) > (𝑤′)−1(𝛿 + 𝑦(𝑒𝑡)) = 𝑥̄𝛿(𝑒𝑡), as

𝑤′ is the gradient of a strongly-convex function 𝑤(·) and hence strictly increasing. Further,

𝑥(𝑒𝑠) > 𝑥(𝑒𝑡) and ℎ′
𝑠(𝑥𝑒𝑠) = ℎ′

𝑡(𝑥𝑒𝑡) imply that 𝑦(𝑒𝑠) > 𝑦(𝑒𝑡) and hence the lemma follows.

At the beginning of the algorithm, we fix order the elements {𝑒1, 𝑒2, . . . , 𝑒𝑛} such that

whenever 𝑦(𝑒𝑖) > 𝑦(𝑒𝑗) we have 𝑖 < 𝑗 (breaking ties arbitrarily). For any vector 𝑥 ∈ R𝐸, we

say that it is satisfies the order on 𝐸 if 𝑥(𝑒𝑖) ≥ 𝑥(𝑒𝑗) whenever 𝑖 < 𝑗.

Lemma 3.6. Consider 𝑥 ∈ 𝑃 (𝑔). Let 𝑥 satisfy the order on 𝐸 = {𝑒1, 𝑒2 . . . 𝑒𝑛}. Then, the

maximal tight set 𝑇 (𝑥) of elements of 𝑥 is a prefix of the ordering, i.e. 𝑇 (𝑥) = {𝑒1, . . . , 𝑒|𝑇 (𝑥)|}.

Further, 𝑥 ∈ 𝑃 (𝑔) if and only if
∑︀𝑘

𝑖=1 𝑥(𝑒𝑖) ≤ 𝑔(𝑘) for all 𝑘 ∈ {1, . . . , 𝑛}.

This follows from the cardinality-based constraints defining 𝑃 (𝑔). We next show that

steps (7)-(10) of the Card-Fix algorithm generate a feasible point in the submodular poly-

tope 𝑃 (𝑔).

Lemma 3.7. Consider 𝑥 ∈ 𝑃 (𝑔) for 𝑔(·) concave and non-decreasing, 𝑔(0) ≥ 0. Let

𝑇 (𝑥) be the maximal set of tight elements of 𝑥 and |𝑇 (𝑥)| = 𝑡. Further, let 𝑥 satisfy

the order on 𝐸. For each 𝑘 = 𝑡 + 1, . . . , 𝑛, let 𝜖𝑘 be the gradient value at which the

83

cardinality constraint for size 𝑘 becomes tight, i.e.
∑︀𝑘

𝑖=𝑡+1 𝑥̄𝜖𝑘(𝑒𝑖) = 𝑔(𝑘) − 𝑔(𝑡). Then,

𝑥′ = (𝑥|𝑇 (𝑥),max{0, 𝑥̄𝜖|𝐸∖𝑇 (𝑥)}) ∈ 𝑃 (𝑔), where 𝜖 = min𝑡+1≤𝑘≤𝑛 𝜖𝑘.

Proof. We first point out that, by definition of 𝑥′ and Lemma 3.5,

𝑥′ = (𝑥(𝑒1), . . . , 𝑥(𝑒𝑡), 𝑥̄𝜖(𝑒𝑡+1), . . . , 𝑥̄𝜖(𝑒𝑠), 0, . . . , 0) ∈ R𝑛
+

for some 𝑡 ≤ 𝑠 ≤ 𝑛 such that 𝑥̄𝜖(𝑒𝑠) > 0, 𝑥̄𝜖(𝑒𝑠+1) ≤ 0. Further, by assumptions on 𝑥, we

have 𝑥′(𝑒𝑖) ≤ 𝑥′(𝑒𝑗) for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑡 and using Lemma 3.5 on 𝑥′, we get 𝑥′(𝑒𝑖) ≥ 𝑥′(𝑒𝑗) for

𝑡+ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

Since 𝑥 ∈ 𝑃 (𝑔), we know that
∑︀𝑡−1

𝑗=1 𝑥(𝑒𝑗) =
∑︀𝑡−1

𝑗=1 𝑥
′(𝑒𝑗) ≤ 𝑔(𝑡 − 1) which in turn

implies that 𝑥(𝑒𝑡) = 𝑥′(𝑒𝑡) = 𝑔(𝑡) −
∑︀𝑡−1

𝑗=1 𝑥
′(𝑒𝑗) ≥ 𝑔(𝑡) − 𝑔(𝑡 − 1). Suppose first that

𝑥′(𝑒𝑡+1) = 𝑥𝜖(𝑒𝑡+1). Then,

𝑥̄𝜖(𝑒𝑡+1) = 𝑥′(𝑒𝑡+1) ≤ 𝑔(𝑡+ 1)− 𝑔(𝑡) . . . since 𝜖 ≤ 𝜖𝑡+1

≤ 𝑔(𝑡)− 𝑔(𝑡− 1) . . . by concavity of 𝑔

≤ 𝑥′(𝑒𝑡).

Thus, 𝑥′ also satisfies the order on 𝐸, i.e. 𝑥′(𝑒𝑖) ≥ 𝑥′(𝑒𝑗) whenever 𝑖 < 𝑗. This holds trivially

if 𝑥′(𝑒𝑡+1) = 0. We can check if
∑︀𝑘

𝑖=1 𝑥
′(𝑒𝑖) ≤ 𝑔(𝑖) for all 𝑖 ≥ 𝑡 to check for feasibility, as

stated in Lemma 3.6. Suppose that 𝑥 /∈ 𝑃 (𝑔), we will show that we get a contradiction.

Consider the first index 𝑗 > 𝑡 such that
∑︀𝑗

𝑖=1 𝑥
′(𝑒𝑖) > 𝑔(𝑗). Since 𝑔(·) is non-decreasing, we

know that 𝑥′(𝑒𝑗) > 0 otherwise
∑︀𝑗

𝑖=1 𝑥
′(𝑒𝑖) =

∑︀𝑗−1
𝑖=1 𝑥

′(𝑒𝑖) ≤ 𝑔(𝑗 − 1) ≤ 𝑔(𝑗). However, this

is a contraction since
∑︀𝑗

𝑖=1 𝑥̄𝜖𝑗(𝑒𝑖) = 𝑔(𝑗) and 𝜖 ≤ 𝜖𝑗 implies
∑︀𝑗

𝑖=1 𝑥̄𝜖(𝑒𝑖) =
∑︀𝑗

𝑖=1 𝑥
′(𝑒𝑖) ≤

𝑔(𝑗).

We are now ready to prove Theorem 10. We will show that the output 𝑥* of Algorithm

7 satisfies first-order optimality conditions of Theorem 8, i.e. suppose 𝐹1, 𝐹2, . . . , 𝐹𝑘 is a

partition of the ground set 𝐸 such that 𝑤′(𝑥*
𝑒) − 𝑤′(𝑦𝑒) = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and 𝑐𝑖 < 𝑐𝑗 for

𝑖 < 𝑗. Then, 𝑥* lies in the face 𝐻𝑜𝑝𝑡 of 𝐵(𝑔) given by 𝐻𝑜𝑝𝑡 := {𝑧 ∈ 𝐵(𝑔)| 𝑧(𝐹1 ∪ . . . ∪ 𝐹𝑖) =

𝑔(|𝐹1 ∪ . . . ∪ 𝐹𝑖|) ∀ 1 ≤ 𝑖 ≤ 𝑘}.

84

Proof. (Proof of Theorem 10.) Let elements in 𝐸 be ordered as {𝑒1, 𝑒2, . . .} such that 𝑦(𝑒𝑠) >

𝑦(𝑒𝑡) for 𝑠 < 𝑡, breaking ties arbitrarily. We start the algorithm with 𝑥(0) = 0 ∈ 𝑃 (𝑓) or

𝑥
(0)
𝑒 = (𝑤′)−1(𝑐+ 𝑤′(𝑦𝑒)) for all 𝑒, for some 𝑐 ∈ R such that 𝑥(0) ∈ 𝑃 (𝑓). In either case, it is

easy to check that 𝑥(0) satisfies the order on 𝐸.

For 𝑖 ≥ 1, we show that given 𝑥 = 𝑥(𝑖−1) ∈ 𝑃 (𝑓) such that 𝑥 satisfies the order on 𝐸, its

maximal tight set 𝑇 (𝑥) is of size 𝑡, and 𝑤′(𝑥𝑒)−𝑤′(𝑦𝑒) = 𝜖(𝑖−1) or 𝑥(𝑒) = 0 for 𝑒 ∈ 𝑇 (𝑥), the

algorithm computes

𝑥(𝑖) = 𝑥′ = (𝑥|𝑇 (𝑥),max{𝑥̄𝜖(𝑖)|𝐸∖𝑇 (𝑥), 𝑥|𝐸∖𝑇 (𝑥)})

where 𝜖(𝑖) = min𝑡+1≤𝑘≤𝑛 𝜖𝑘, and 𝜖𝑘 is such that
∑︀𝑘

𝑖=𝑡+1 𝑥̄𝜖𝑘(𝑒𝑖) = 𝑔(𝑘)−𝑔(𝑡) for 𝑘 = 𝑡+1, . . . , 𝑛.

We show by induction that the following hold for 𝑥(𝑖) (= 𝑥′) and 𝜖(𝑖):

(i) 𝑥′ = 𝑥(𝑖) ∈ 𝑃 (𝑓) and satisfies the order on 𝐸,

(ii) 𝑇 (𝑥′) ⊃ 𝑇 (𝑥) and 𝜖(𝑖) > 𝜖(𝑖−1),

(iii) For 𝑒 ∈ 𝐸 ∖ 𝑇 (𝑥′), 𝑤′(𝑥′
𝑒)− 𝑤′(𝑦𝑒) = 𝜖(𝑖) or 𝑥′(𝑒) = 0.

Proof for (i). Suppose 𝜖(𝑖) ≤ 𝜖(𝑖−1), then 𝑥′ = 𝑥 ∈ 𝑃 (𝑓) and 𝑥′ satisfies the order on

𝐸. Otherwise suppose 𝜖(𝑖) > 𝜖(𝑖−1). Then, using Lemma 3.7 and the assumption on 𝑥 that

𝑤′(𝑥𝑒)− 𝑤′(𝑦𝑒) = 𝜖(𝑖−1) or 𝑥(𝑒) = 0 for 𝑒 ∈ 𝑇 (𝑥), we get 𝑥′ ∈ 𝑃 (𝑓) and 𝑥′ satisfies the order

on 𝐸.

Proof for (ii). Consider 𝑘 = argmin𝑡+1≤𝑗≤𝑛 𝜖𝑘. We know that
∑︀𝑘

𝑖=𝑡+1 𝑥̄𝜖(𝑒𝑖) = 𝑔(𝑘)−𝑔(𝑡).

However, 𝑥′ ≥ (𝑥|𝑇 (𝑥), 𝑥̄𝜖|𝐸∖𝑇 (𝑥)). Thus, {𝑒1, . . . , 𝑒𝑘} ∈ 𝑇 (𝑥′). This also implies that 𝜖(𝑖) >

𝜖(𝑖−1) otherwise 𝑥 = 𝑥′.

Proof for (iii). For 𝑒 ∈ 𝐸 ∖ 𝑇 (𝑥′), 𝑥′
𝑒 = max{0, 𝑥̄𝜖(𝑖)(𝑒)}. This implies 𝑥′

𝑒 = 0 or 𝑤′(𝑥′
𝑒)−

𝑤′(𝑦𝑒) = 𝜖(𝑖).

Note that whenever 𝑇 (𝑥(𝑖)) contains 0 element, the algorithm stops as 𝑇 (𝑥(𝑖)) must be 𝐸.

Let us partition the ground set according to the gradient value of elements. Let 𝐹1, 𝐹2, . . . , 𝐹𝑘

is a partition of the ground set 𝐸 such that 𝑤′(𝑥*
𝑒)−𝑤′(𝑦𝑒) = 𝑐𝑖 for all 𝑒 ∈ 𝐹𝑖 and 𝑐𝑖 < 𝑐𝑗 for

𝑖 < 𝑗. We claim that 𝐹𝑖 = 𝑇 (𝑥(𝑖))∖𝑇 (𝑥(𝑖−1)), and 𝑤′(𝑥*
𝑒)−𝑤′(𝑦𝑒) = 𝜖(𝑖) for 𝑒 ∈ 𝐹𝑖. Moreover,

85

𝑥*(𝐹1, . . . , 𝐹𝑖) = 𝑥*(𝑇 (𝑥(𝑖))) = 𝑓(𝑇 (𝑥(𝑖))) for each 𝑖, which using Theorem 8 proves the main

claim.

Running Time Algorithm 7 starts with sorted elements {𝑒1, 𝑒2, . . . , 𝑒𝑛} such that 𝑦(𝑒𝑠) >

𝑦(𝑒𝑡) for 𝑠 < 𝑡. The number of iterations in the algorithm is at most 𝑛, since in each iteration

the size of the maximal tight set increases. Each iteration requires the solution of at most

𝑛 equations in a single variable 𝜖𝑘, for which we assume an oracle access with constant

query time (recall that this is just a fraction in the case of squared Euclidean distance and

KL-divergence). The worst case running time of Card-Fix algorithm is 𝑂(𝑛 log 𝑛 + 𝑛2).

For cardinality-based submodular functions 𝑓(·), based on a concave function 𝑔(·) we in

fact need to check for the cardinality constraints only at the unique values of 𝑔. Consider

𝑈 = {1, . . . , 𝑗, 𝑛} where 𝑗 is the minimum value such that 𝑔(𝑗) = 𝑔(𝑛). Then, steps (7-9)

can be simplified to be:

(7) for 𝑘 ∈ {𝑡+ 1, . . . , 𝑛} ∩ 𝑈 :

(8) set 𝜖𝑘 :
𝑘∑︁

𝑗=𝑡+1

𝑥̄𝜖𝑘(𝑒𝑗) = 𝑔(𝑘)− 𝑔(𝑡)

(9) 𝜖(𝑖) = min
𝑡+1≤𝑘≤𝑛,𝑘∈𝑈

𝜖𝑘.

This modification reduces the worst-case running time 𝑂(𝑛(log 𝑛 + 𝑑)) where 𝑑 = |𝑈 |.

This subsumes some recent results of Yasutake et al. (for minimizing Euclidean and KL-

divergence on the permutahedron) [Yasutake et al., 2011], Suehiro et al. (for minimizing

Euclidean and KL-divergence on to cardinality-based polytopes) [Suehiro et al., 2012] and

Krichene et al. (for minimizing 𝜑-divergences onto the simplex). Our work, however, applies

to the divergence generated from any uniformly separable mirror map and any cardinality-

based submodular function.

86

Chapter 4

Parametric Line Search

“A sequence works in a way a collection never can." - George Murray.

In this chapter, we would like to solve the fundamental problem of a parametric line

search in an extended submodular polytope 𝐸𝑃 (𝑓) = {𝑥 ∈ R𝐸 | 𝑥(𝑆) ≤ 𝑓(𝑆) ∀𝑆 ⊆ 𝐸}.

Given 𝑥0 ∈ 𝐸𝑃 (𝑓) (this condition can be verified by performing a single submodular function

minimization) and 𝑎 ∈ R𝑛, we would like to find the largest 𝛿 such that 𝑥0+𝛿𝑎 ∈ 𝐸𝑃 (𝑓). The

only assumption we make on the submodular function 𝑓(·) in this chapter is that 𝑓(∅) ≥ 0

(otherwise 𝐸𝑃 (𝑓) will be empty). By considering the submodular function 𝑓 ′ taking the

value 𝑓 ′(𝑆) = 𝑓(𝑆) − 𝑥0(𝑆) for any set 𝑆, we can equivalently find largest 𝛿 such that

𝛿𝑎 ∈ 𝐸𝑃 (𝑓 ′). Since 𝑥0 ∈ 𝐸𝑃 (𝑓) we know that 0 ∈ 𝐸𝑃 (𝑓 ′) and thus 𝑓 ′ is nonnegative.

Thus, without loss of generality, we consider the problem

𝛿* = max

{︂
𝛿 : min

𝑆⊆𝐸
𝑓(𝑆)− 𝛿𝑎(𝑆) ≥ 0

}︂
, (4.1)

for nonnegative submodular functions 𝑓 . Geometrically, the problem of finding 𝛿* can also

be interpreted as: as we go along the line segment ℓ(𝛿) = 𝑥0 + 𝛿𝑎 (or just 𝛿𝑎 if we assume

𝑥0 = 0), when do we exit the extended submodular polyhedron 𝐸𝑃 (𝑓)?

Line searches arise as subproblems in many algorithmic applications. For example, in the

previous chapter, we noted that the Inc-Fix algorithm requires to solve the line search prob-

lem when computing projections under the squared Euclidean distance and KL-divergence

87

(Section 3.2.1). For the algorithmic version of Carathéodory’s theorem1 (over any polytope),

one typically performs a line search from a vertex of the face being considered in a direction

within the same face. This is, for example, also the case for variants of the Frank-Wolfe

algorithm (see for instance [Freund et al., 2015]). Line searches over extended submodu-

lar polyhedra are also intimately related to minimum ratio problems that seek to minimize

min𝑆
𝑓(𝑆)
𝑔(𝑆)

for some submodular function 𝑓(·) and a linear function 𝑔(·) [Cunningham, 1985b].

Since 𝑥0 = 0 ∈ 𝐸𝑃 (𝑓) we know that 𝛿* ≥ 0 and that the minimum over 𝑆 could be taken

only over the sets 𝑆 with 𝑎(𝑆) > 0, although we will not be using this fact. To make this

problem nontrivial, we assume that there exists some 𝑖 with 𝑎𝑖 > 0. A natural way to solve

the line search problem is to use a cutting plane approach. Start with any upper bound

𝛿1 ≥ 𝛿* and define the point 𝑥(1) = 𝛿1𝑎. One can then generate a most violated inequality

for 𝑥(1), where most violated means the one minimizing 𝑓(𝑆) − 𝛿1𝑎(𝑆) over all sets 𝑆. The

hyperplane corresponding to a minimizing set 𝑆1 intersects the line in 𝑥(2) = 𝛿2𝑎. Proceeding

analogously, we obtain a sequence of points and eventually will reach the optimum 𝛿.

This cutting-plane approach is equivalent to Dinkelbach’s method or the discrete New-

ton’s algorithm for solving (4.1). Let 𝛿1 be large enough so that 𝛿1𝑎 /∈ 𝐸𝑃 (𝑓). For example

we could set 𝛿1 = min𝑒∈𝐸,𝑎({𝑒})>0 𝑓({𝑒})/𝑎𝑒. At iteration 𝑖 ≥ 1 of Newton’s algorithm, we

consider the submodular function 𝑘𝑖(𝑆) = 𝑓(𝑆)− 𝛿𝑖𝑎(𝑆), and compute

ℎ𝑖 = min
𝑆

𝑘𝑖(𝑆),

and define 𝑆𝑖 to be any minimizer of 𝑘𝑖(𝑆). Now, let 𝑓𝑖 = 𝑓(𝑆𝑖) and 𝑔𝑖 = 𝑎(𝑆𝑖). As long as

ℎ𝑖 < 0, we proceed and set

𝛿𝑖+1 =
𝑓𝑖
𝑔𝑖
.

As soon as ℎ𝑖 = 0, Newton’s algorithm terminates and we have that 𝛿* = 𝛿𝑖. We give the

full description of the discrete Newton’s algorithm in Algorithm 8.

When 𝑎 ≥ 0 (as is the case in the Inc-Fix algorithm), it is known that Newton’s

1The Carathéodory’s theorem states that given any point in a polytope 𝑃 ⊆ R𝑛, it can be expressed as
a convex combination of at most 𝑛+ 1 vertices of 𝑃 .

88

Algorithm 8: Discrete Newton’s algorithm
input : submodular 𝑓 : 2𝐸 → R, 𝑓 nonnegative, 𝑎 ∈ R𝑛

output: 𝛿* = max {𝛿 : min𝑆 𝑓(𝑆)− 𝛿𝑎(𝑆) ≥ 0}
𝑖 = 0, 𝛿1 = min𝑒∈𝐸,𝑎𝑒>0 𝑓({𝑒})/𝑎𝑒;
repeat

𝑖 = 𝑖+ 1;
ℎ𝑖 = min𝑆⊆𝐸 𝑓(𝑆)− 𝛿𝑖𝑎(𝑆);
𝑆𝑖 ∈ argmin𝑆⊆𝐸 𝑓(𝑆)− 𝛿𝑖𝑎(𝑆);
𝛿𝑖+1 = 𝑓(𝑆𝑖)

𝑎(𝑆𝑖)
;

until ℎ𝑖 = 0;
Return 𝛿* = 𝛿𝑖.

algorithm terminates in at most 𝑛 iterations (for e.g. [Topkis, 1978]). Even more, the

function 𝑔(𝛿) := min𝑆 𝑓(𝑆) − 𝛿𝑎(𝑆) is a concave, piecewise affine function with at most 𝑛

breakpoints (and 𝑛+1 affine segments) since for any set {𝛿𝑖}𝑖∈𝐼 of 𝛿 values, the submodular

functions 𝑓(𝑆) − 𝛿𝑖𝑎(𝑆) for 𝑖 ∈ 𝐼 form a sequence of strong quotients (ordered by the 𝛿𝑖’s),

and therefore the minimizers form a chain of sets. Refer to Section 2.2.1 for definitions of

strong quotients and details.

When 𝑎 is arbitrary (not necessarily nonnegative), little is known about the number of

iterations of the discrete Newton’s algorithm. The number of iterations can easily be bounded

by the number of possible distinct positive values of 𝑎(𝑆), but this is usually very weak

(unless, for example, the support of 𝑎 is small as is the case in the calculation of exchange

capacities2). A weakly polynomial bound involving the sizes of the submodular function

values is easy to obtain (by doing a binary search on [0, 𝛿1] and checking for feasibility), but

no strongly polynomial bound was known as mentioned as an open question in [Nagano,

2007b], [Iwata, 2008]. In this chapter, we show that the number of iterations is quadratic.

This is the first strongly polynomial bound in the case of an arbitrary 𝑎.

Theorem 11. For any submodular function 𝑓 : 2[𝑛] → R+ and an arbitrary direction 𝑎, the

discrete Newton’s algorithm takes at most 𝑛2 +𝑂(𝑛 log2(𝑛)) iterations.

Previously, the only strongly polynomial algorithm to solve the line search problem in

the case of an arbitrary 𝑎 ∈ R𝑛 was an algorithm of Nagano et al. [Nagano, 2007b] rely-

ing on Megiddo’s parametric search framework. This requires 𝑂̃(𝑛8) submodular function
2For 𝑥0 ∈ 𝐸𝑃 (𝑓), the exchange capacity of an element 𝑒 with respect to 𝑒′ ∈ 𝐸 (𝑒′ ̸= 𝑒) is the maximum

𝛿: 𝑥0 + 𝛿(𝜒(𝑒)− 𝜒(𝑒′)) ∈ 𝐸𝑃 (𝑓).

89

hi

gi=a(Si)

SiSi+1Si+2 S

ki(Si)

ki(Si+2)

ki(Si+1)

gi+1=a(Si+1)

hi+1

hi+2

gi+2=a(Si+2)

f(S)- Sa(S)

f(Si)- Sa(Si)

Figure 4-1: Illustration of Newton’s iterations and notation in Lemma 4.1.

minimizations, where 𝑂̃(𝑛8) corresponds to the current best running time known for fully

combinatorial submodular function minimization [Iwata and Orlin, 2009]. On the other

hand, our main result in Theorem 11 shows that the discrete Newton’s algorithm takes

𝑂(𝑛2) iterations, i.e. 𝑂(𝑛2) submodular function minimizations, and we can use any sub-

modular function minimization algorithm. Each submodular function minimization can be

computed, for example, in 𝑂̃(𝑛4 + 𝛾𝑛3) time using a result of [Lee et al., 2015], where 𝛾 is

the time for an evaluation of the submodular function.

Radzik [Radzik, 1998] provides an analysis of the discrete Newton’s algorithm for the

related problem of max 𝛿 : min𝑆∈𝒮 𝑏(𝑆)−𝛿𝑎(𝑆) ≥ 0 where both 𝑎 and 𝑏 are modular functions

and 𝒮 is an arbitrary collection of sets. He shows that the number of iterations of the

discrete Newton’s algorithm is at most 𝑂(𝑛2 log2(𝑛)). Our analysis does not handle an

arbitrary collection of sets, but generalizes his setting as it applies to the more general

case of submodular functions 𝑓 . Note that considering submodular functions (as opposed

to modular functions) makes the problem considerably harder since the number of input

parameters for modular functions is only 2𝑛, whereas in the case of submodular functions

the input is exponential (we assume oracle access for function evaluation).

Apart from the main result of bounding the number of iterations of the discrete Newton’s

algorithm for solving max 𝛿 : min𝑆 𝑓(𝑆)− 𝛿𝑎(𝑆) ≥ 0 in Section 4.2, we prove results on ring

90

families and geometrically increasing sequences of sets, which may be of independent interest.

As part of the proof of Theorem 11, we first show a tight (quadratic) bound on the length

of a sequence 𝑇1, · · · , 𝑇𝑘 of sets such that no set in the sequence belongs to the smallest ring

family generated by the previous sets (Section 4.1). Further, one of the key ideas in the

proof of Theorem 11 is to consider a sequence of sets (each set corresponds to an iteration in

the discrete Newton’s algorithm) such that the value of a submodular function on these sets

increases geometrically (to be precise, by a factor of 4). We show a quadratic bound on the

length of such sequences for any submodular function and construct two (related) examples

to show that this bound is tight, in Section 4.3. Interestingly, one of these examples is a

construction of intervals and the other example is a weighted directed graph where the cut

function already gives such a sequence of sets.

4.1 Ring families

A ring family ℛ ⊂ 2𝑉 is a family of sets closed under taking unions and intersections3.

From Birkhoff’s representation theorem, we can associate to a ring family a directed graph

𝐷 = (𝑉,𝐸) in the following way. Let 𝐴 =
⋂︀

𝑅∈ℛ 𝑅 and 𝐵 =
⋃︀

𝑅∈ℛ 𝑅. Let 𝐸 = {(𝑖, 𝑗) | 𝑅 ∈

ℛ, 𝑖 ∈ 𝑅 ⇒ 𝑗 ∈ 𝑅}. Then for any 𝑅 ∈ ℛ, we have that (i) 𝐴 ⊆ 𝑅, (ii) 𝑅 ⊆ 𝐵 and (iii)

𝛿+(𝑅) = {(𝑖, 𝑗) ∈ 𝐸 | 𝑖 ∈ 𝑅, 𝑗 /∈ 𝑅} = ∅. But, conversely, any set 𝑅 satisfying (i), (ii) and

(iii) must be in ℛ. Indeed, for any 𝑖 ̸= 𝑗 with (𝑖, 𝑗) /∈ 𝐸, there must be a set 𝑈𝑖𝑗 ∈ ℛ with

𝑖 ∈ 𝑈𝑖𝑗 and 𝑗 /∈ 𝑈𝑖𝑗. To show that a set 𝑅 satisfying (i), (ii) and (iii) is in ℛ, it suffices to

observe that

𝑅 =
⋃︁
𝑖∈𝑅

⋂︁
𝑗 /∈𝑅

𝑈𝑖𝑗, (4.2)

and therefore 𝑅 belongs to the ring family.

Given a collection of sets 𝒯 ⊆ 2𝑉 , we defineℛ(𝒯) to be the smallest ring family containing

𝒯 . The directed graph representation of this ring family can be obtained by defining 𝐴, 𝐵

and 𝐸 directly from 𝒯 rather than from the larger ℛ(𝒯), i.e. 𝐴 =
⋂︀

𝑅∈𝒯 𝑅 =
⋂︀

𝑅∈ℛ(𝒯) 𝑅,

3We depart in this section from the notation used otherwise in this thesis, and refer to the ground set
of elements as 𝑉 instead of 𝐸. Here, we call 𝑉 = {1, . . . , 𝑛} and reserve 𝐸 for encoding pairwise relation
between the elements of the ground set.

91

𝐵 =
⋃︀

𝑅∈𝒯 𝑅 =
⋃︀

𝑅∈ℛ(𝒯) 𝑅, and 𝐸 = {(𝑖, 𝑗) | 𝑅 ∈ 𝒯 , 𝑖 ∈ 𝑅 ⇒ 𝑗 ∈ 𝑅}. Further, in the

expression (4.2) of any set 𝑅 ∈ ℛ(𝒯), we can use sets 𝑈𝑖𝑗 ∈ 𝒯 .

Given a sequence of subsets 𝑇1, · · · , 𝑇𝑘 of 𝑉 , define ℒ𝑖 := ℛ({𝑇1, · · · , 𝑇𝑖}) for 1 ≤ 𝑖 ≤ 𝑘.

Assume that for each 𝑖 > 1, we have that 𝑇𝑖 /∈ ℒ𝑖−1. We should emphasize that this condition

depends on the ordering of the sets, and not just on this collection of sets. For instance,

{1}, {1, 2}, {2} is a valid ordering whereas {1}, {2}, {1, 2} is not. We have thus a chain of

ring families: ℒ1 ⊂ ℒ2 ⊂ · · · ⊂ ℒ𝑘 where all the containments are proper. The question is

how large can 𝑘 be, and the next theorem shows that it can be at most quadratic in 𝑛.

Theorem 12. Consider a chain of ring families, ℒ0 = ∅ ≠ ℒ1 (ℒ2 (· · · (ℒ𝑘 within 2𝑉

with 𝑛 = |𝑉 |. Then

𝑘 ≤
(︂
𝑛+ 1

2

)︂
+ 1

.

Before proving this theorem, we show that the bound on the number of sets is tight.

Example 1. Let 𝑉 = {1, · · · , 𝑛}. For each 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, consider intervals [𝑖, 𝑗] = {𝑘 |

𝑖 ≤ 𝑘 ≤ 𝑗}. Add also the empty set ∅ as the trivial interval [0, 0] (as 0 /∈ 𝐸). We have just

defined 𝑘 =
(︀
𝑛+1
2

)︀
+ 1 sets. Define a complete order on these intervals in the following way:

(𝑖, 𝑗) ≺ (𝑠, 𝑡) if 𝑗 < 𝑡 or (𝑗 = 𝑡 and 𝑖 < 𝑠). We claim that if we consider these intervals in

the order given by ≺, we satisfy the main assumption of the theorem that [𝑠, 𝑡] /∈ ℛ(𝒯𝑠𝑡)

where 𝒯𝑠𝑡 = {[𝑖, 𝑗] | (𝑖, 𝑗) ≺ (𝑠, 𝑡)}. Indeed, for 𝑠 = 1 and any 𝑡, we have that [1, 𝑡] /∈ ℛ(𝒯1𝑡)

since
⋃︀

𝐼∈𝒯1𝑡 𝐼 = [1, 𝑡 − 1] ̸⊃ [1, 𝑡]. On the other hand, for 𝑠 > 1 and any 𝑡, we have that

[𝑠, 𝑡] /∈ ℛ(𝒯𝑠𝑡) since for all 𝐼 ∈ 𝒯𝑠𝑡 we have (𝑡 ∈ 𝐼 ⇒ 𝑠− 1 ∈ 𝐼) while this is not the case for

[𝑠, 𝑡].

Proof. For each 1 ≤ 𝑖 ≤ 𝑘, let 𝑇𝑖 ∈ ℒ𝑖 ∖ ℒ𝑖−1. We can assume that ℒ𝑖 = ℛ({𝑇1, · · ·𝑇𝑖})

(otherwise a longer chain of ring families can be constructed). If none of the 𝑇𝑖’s is the empty

set, we can increase the length of the chain by considering (the ring families generated by)

the sequence ∅, 𝑇1, 𝑇2, · · · , 𝑇𝑘. Similarly if 𝑉 is not among the 𝑇𝑖’s, we can add 𝑉 either in

first or second position in the sequence. So we can assume that the sequence has 𝑇1 = ∅ and

𝑇2 = 𝑉 , i.e. ℒ1 = {∅} and ℒ2 = {∅, 𝑉 }.

92

When considering ℒ2, its digraph representation has 𝐴 = ∅, 𝐵 = 𝑉 and the directed

graph 𝐷 = (𝑉,𝐸) is the bi-directed complete graph on 𝑉 . To show a weaker bound of

𝑘 ≤ 2 + 𝑛(𝑛 − 1) is easy: every 𝑇𝑖 we consider in the sequence will remove at least one arc

of this digraph and no arc will get added.

To show the stronger bound in the statement of the theorem, consider the digraph 𝐷′

obtained from 𝐷 by contracting every strongly connected component of 𝐷 and discarding

all but one copy of (possibly) multiple arcs between two vertices of 𝐷′. We keep track of

two parameters of 𝐷′: 𝑠 is its number of vertices and 𝑎 is its the number of arcs. Initially,

when considering ℒ2, we have 𝑠 = 1 strongly connected component and 𝐷′ has no arc:

𝑎 = 0. Every 𝑇𝑖 we consider will either keep the same strongly connected components in 𝐷

(i.e. same vertices in 𝐷′) and remove (at least) one arc from 𝐷′, or will break up at least

one strongly connected component in 𝐷 (i.e. increases vertices in 𝐷′). In the latter case,

we can assume that only one strongly connected component is broken up into two strongly

connected components and the number of arcs added is at most 𝑠 since this newly formed

connected component may have a single arc to every other strongly connected component.

Thus, in the worst case, we move either from a digraph 𝐷′ with parameters (𝑠, 𝑎) to one

with (𝑠, 𝑎 − 1) or from (𝑠, 𝑎) to (𝑠 + 1, 𝑎 + 𝑠). By induction, we claim that if the original

one has parameters (𝑠, 𝑎) then the number of steps before reaching the digraph on 𝑉 with

no arcs with parameters (𝑛, 0) is at most

𝑎+

(︂
𝑛+ 1

2

)︂
−
(︂
𝑠+ 1

2

)︂
.

Indeed, this trivially holds by induction for any step (𝑠, 𝑎)→ (𝑠, 𝑎− 1) and it also holds

for any step (𝑠, 𝑎)→ (𝑠+ 1, 𝑎+ 𝑠) since:

(𝑎+ 𝑠) +

(︂
𝑛+ 1

2

)︂
−
(︂
𝑠+ 2

2

)︂
+ 1 = 𝑎+

(︂
𝑛+ 1

2

)︂
−
(︂
𝑠+ 1

2

)︂
.

As the digraph corresponding to ℒ2 has parameters (1, 0), we obtain that 𝑘 ≤ 2+
(︀
𝑛+1
2

)︀
−1 =(︀

𝑛+1
2

)︀
+ 1.

93

4.2 Analysis of discrete Newton’s Algorithm

To prove Theorem 11, we start by recalling Radzik’s analysis of Newton’s algorithm for the

case of modular functions ([Radzik, 1998]). First of all, the discrete Newton’s algorithm, as

stated in Algorithm 8 for solving max 𝛿 : min𝑆⊆𝐸 𝑓(𝑆)− 𝛿𝑎(𝑆) ≥ 0 terminates (Lemma 4.1).

Recall that ℎ𝑖 = min𝑆 𝑓(𝑆)−𝛿𝑖𝑎(𝑆), 𝑆𝑖 ∈ argmin𝑆 𝑓(𝑆)−𝛿𝑖𝑎(𝑆), 𝑔𝑖 = 𝑎(𝑆𝑖) and 𝛿𝑖+1 =
𝑓(𝑆𝑖)
𝑎(𝑆𝑖)

.

Let 𝑓𝑖 = 𝑓(𝑆𝑖) and 𝑔𝑖 = 𝑎(𝑆𝑖). Figure 4-1 illustrates the discrete Newton’s algorithm and

the notation.

Lemma 4.1. Newton’s algorithm as described in Algorithm 8 terminates in a finite number

of steps 𝑡 and generate sequences:

(i) ℎ1 < ℎ2 < · · · < ℎ𝑡−1 < ℎ𝑡 = 0,

(ii) 𝛿1 > 𝛿2 > · · · > 𝛿𝑡−1 > 𝛿𝑡 = 𝛿* ≥ 0,

(iii) 𝑔1 > 𝑔2 > · · · > 𝑔𝑡−1 > 𝑔𝑡 ≥ 0.

Furthermore, if 𝑔𝑡 > 0 then 𝛿* = 0.

The first proof of the above lemma is often attributed to McCormick and Ervolina [Mc-

Cormick and Ervolina, 1994] and we present it here for completeness.

Proof. Notice first that by the choice of 𝛿1 = min𝑒∈𝐸,𝑎(𝑒)>0 𝑓({𝑒})/𝑎𝑒, ℎ1 ≤ 0. Since we start

with a feasible point in the extended submodular polytope 𝐸𝑃 (𝑓), 𝑓(·) can be assumed to be

non-negative, and thus, 𝛿1 ≥ 0. Further, let 𝑆1 be a minimizer of min𝑆⊆𝐸 𝑓(𝑆)− 𝛿1𝑎(𝑆). We

know that the minimum of 𝑓−𝛿𝑎 is at most 0 (by the choice of 𝛿1), therefore 𝑓(𝑆1) ≤ 𝛿1𝑎(𝑆1),

therefore, 𝑔1 = 𝑎(𝑆1) ≥ 0. Thus, the claim of the lemma holds for the first iteration.

Assume by induction that the claim holds for all iterations 𝑖, for 1 ≤ 𝑖 ≤ 𝑘. Consider

iteration 𝑖 = 𝑘 + 1, and let us suppose that the algorithm has not terminated yet. Then,

using the definition of 𝛿𝑘+1 we get:

𝛿𝑘+1 =
𝑓𝑘
𝑔𝑘

=
ℎ𝑘 + 𝛿𝑘𝑔𝑘

𝑔𝑘
. . . since ℎ𝑘 = 𝑓𝑘 − 𝛿𝑘𝑔𝑘. (4.3)

= 𝛿𝑘 +
ℎ𝑘

𝑔𝑘
. (4.4)

94

By induction we know that 𝛿𝑘 > 0, ℎ𝑘 < 0, 𝑔𝑘 > 0. Therefore, 𝛿𝑘+1 < 𝛿𝑘. Moreover,

𝛿𝑘+1 ≥ 𝛿* ≥ 0, since otherwise the constraint with respect to the set 𝑆𝑘 would be violated.

Note that ℎ(𝛿) = min𝑆⊆𝐸 𝑓(𝑆)− 𝛿𝑎(𝑆) is the lower envelope of a number of linear functions,

and therefore ℎ(·) is a concave function. Moreover, ℎ(𝛿) is a strictly decreasing function for

𝛿 ≥ 𝛿𝑘+1, therefore, ℎ𝑘+1 < ℎ𝑘 given 𝛿𝑘+1 < 𝛿𝑘.

Finally to show that 𝑔𝑘+1 < 𝑔𝑘, consider the following two inequalities obtained by the

minimality of 𝑆𝑘+1 and 𝑆𝑘 at 𝛿𝑘+1 and 𝛿𝑘 respectively:

𝑓(𝑆𝑘+1)− 𝛿𝑘𝑎(𝑆𝑘+1) ≥ 𝑓(𝑆𝑘)− 𝛿𝑘𝑎(𝑆𝑘) (4.5)

𝑓(𝑆𝑘+1)− 𝛿𝑘+1𝑎(𝑆𝑘+1) ≤ 𝑓(𝑆𝑘)− 𝛿𝑘+1𝑎(𝑆𝑘) (4.6)

Subtracting (4.6) from (4.5), we get:

𝛿𝑘𝑎(𝑆𝑘+1)− 𝛿𝑘+1𝑎(𝑆𝑘+1) ≥ 𝛿𝑘+1𝑎(𝑆𝑘)− 𝛿𝑘𝑎(𝑆𝑘) (4.7)

⇒ (𝛿𝑘 − 𝛿𝑘+1)𝑔𝑘 ≥ (𝛿𝑘 − 𝛿𝑘+1)𝑔𝑘+1. (4.8)

Since 𝛿𝑘 > 𝛿𝑘+1, we get 𝑔𝑘 ≥ 𝑔𝑘+1 and the inequality is tight whenever there exists iteration

𝑘 + 1, i.e. 𝑓(𝑆𝑘) − 𝛿𝑘+1𝑎(𝑆𝑘) = 0 > 𝑓(𝑆𝑘+1) − 𝛿𝑘+1𝑎(𝑆𝑘+1). Since the sequence of {𝑔𝑖} is

strictly decreasing, all the elements in the sequence are distinct. Thus, the length of the

sequence (hence the number of iterations of the algorithm) has to be finite as each 𝑔𝑖 = 𝑎(𝑆𝑖)

for some set 𝑆𝑖.

As in Radzik’s analysis, we use the following lemma, illustrated in Figure 4-2, and we

reproduce here its proof.

Lemma 4.2. For any 𝑖 < 𝑡, we have ℎ𝑖+1

ℎ𝑖
+ 𝑔𝑖+1

𝑔𝑖
≤ 1.

Proof. By definition of 𝑆𝑖, we have that

ℎ𝑖 = 𝑓(𝑆𝑖)− 𝛿𝑖𝑎(𝑆𝑖) = 𝑓𝑖 − 𝛿𝑖𝑔𝑖 ≤ 𝑓(𝑆𝑖+1)− 𝛿𝑖𝑎(𝑆𝑖+1) = 𝑓𝑖+1 − 𝛿𝑖𝑔𝑖+1

= ℎ𝑖+1 +
𝑓𝑖
𝑔𝑖
𝑔𝑖+1 −

𝑓𝑖 − ℎ𝑖

𝑔𝑖
𝑔𝑖+1 = ℎ𝑖+1 + ℎ𝑖

𝑔𝑖+1

𝑔𝑖
.

Since ℎ𝑖 < 0, dividing by ℎ𝑖 gives the statement.

95

Figure 4-2: Illustration for showing that ℎ𝑖+1 + ℎ𝑖
𝑔𝑖+1

𝑔𝑖
≤ ℎ𝑖, as in Lemma 4.2.

Thus, in every iteration, either 𝑔𝑖 or ℎ𝑖 decreases by a constant factor smaller than 1. We

can thus partition the iterations into two types, for example as

𝐽𝑔 =

{︂
𝑖 | 𝑔𝑖+1

𝑔𝑖
≤ 2

3

}︂

and 𝐽ℎ = {𝑖 /∈ 𝐽𝑔}. Observe that 𝑖 ∈ 𝐽ℎ implies ℎ𝑖+1

ℎ𝑖
< 1

3
. We first bound |𝐽𝑔| as was done

in [Radzik, 1998].

Lemma 4.3. |𝐽𝑔| = 𝑂(𝑛 log 𝑛).

Proof sketch. Let 𝐽𝑔 = {𝑖1, 𝑖2, · · · , 𝑖𝑘} and let 𝑇𝑗 = 𝑆𝑖𝑗 . From the monotonicity of 𝑔, these

sets 𝑇𝑗 are such that 𝑎(𝑇𝑗+1) ≤ 2
3
𝑎(𝑇𝑗). These can be viewed as linear inequalities with

small coefficients involving the 𝑎𝑖’s, and by normalizing and taking an extreme point of

this polytope, Goemans (see [Radzik, 1998]) has shown that the number 𝑘 of such sets is

𝑂(𝑛 log 𝑛).

Although we do not need this for the analysis, the bound of 𝑂(𝑛 log 𝑛) on the number

of geometrically decreasing sets defined on 𝑛 numbers is tight, as was shown by Mikael

Goldmann in 1993 by a beautiful construction based on a Fourier-analytic approach of Håstad

[Håstad, 1994]. We refer the interested reader to the conference paper version of this chapter

that contains the full proof of this construction [Goemans et al., 2017].

96

S
S1S2S6S7S9S13

Jg={1,2,6,7,8,13}
Jh={3,4,5,9,10,11,12}

|Jg|<=O(nlogn) by
Lemma 3

 #()<=(n2+n)/2+1
by Theorem 3

 #()<=(n2+n)/2+1
by Theorem 3

lower envelope

Figure 4-3: Illustration of the sets 𝐽𝑔 and 𝐽ℎ and the bound on these required to show an 𝑂(𝑛3 log 𝑛)
bound on the number of iterations of the discrete Newton’s algorithm.

4.2.1 Weaker cubic upper bound

Before deriving the bound of 𝑂(𝑛2) on |𝐽𝑔| + |𝐽ℎ| for Theorem 11, we show how to derive

a weaker bound of 𝑂(𝑛3 log 𝑛). For showing the 𝑂(𝑛3 log 𝑛) bound, first consider a block of

consecutive iterations [𝑢, 𝑣] := {𝑢, 𝑢+ 1, · · · , 𝑣} within 𝐽ℎ.

Theorem 13. Let [𝑢, 𝑣] ⊆ 𝐽ℎ. Then |[𝑢, 𝑣]| ≤ 𝑛2 + 𝑛+ 1.

Figure 4-3 illustrates an example of sets 𝐽𝑔 and 𝐽ℎ along with the bound on their size.

The strategy of the proof is to show (i) that, for the submodular function 𝑘𝑣(𝑆) =

𝑓(𝑆) − 𝛿𝑣𝑎(𝑆), the values of 𝑘𝑣(𝑆𝑖) for 𝑖 ∈ [𝑢, 𝑣 − 1] form a geometrically decreasing series

(Lemma 4.4), (ii) that each 𝑆𝑖 cannot be in the ring family generated by 𝑆𝑖+1, . . . , 𝑆𝑣−1

(Lemma 4.5 and Theorem 14), and (iii) then conclude using our Theorem 12 on the length

of a chain of ring families.

Lemma 4.4. Let [𝑢, 𝑣] ⊆ 𝐽ℎ. Then for 𝑘𝑣(𝑆) = 𝑓(𝑆) − 𝛿𝑣𝑎(𝑆), we have (i) 𝑘𝑣(𝑆𝑣) =

min𝑆 𝑘𝑣(𝑆) = ℎ𝑣, (ii) 𝑘𝑣(𝑆𝑣−1) = 0, (iii) 𝑘𝑣(𝑆𝑣−2) > 2|ℎ𝑣| and (iv) 𝑘𝑣(𝑆𝑖−1) > 2𝑘𝑣(𝑆𝑖) for

𝑖 ∈ [𝑢+ 1, 𝑣 − 1].

97

Proof. Since 𝑔𝑖+1

𝑔𝑖
> 2

3
for all 𝑖 ∈ [𝑢, 𝑣], Lemma 4.2 implies that ℎ𝑖+1

ℎ𝑖
≤ 1

3
, and thus

|ℎ𝑖+1|
𝑔𝑖+1

≤ 1

2

|ℎ𝑖|
𝑔𝑖

.

Since 𝛿𝑖+1 − 𝛿𝑖 =
𝑓𝑖
𝑔𝑖
− 𝑓𝑖−ℎ𝑖

𝑔𝑖
= ℎ𝑖

𝑔𝑖
. We deduce that

𝛿𝑖+1 − 𝛿𝑖+2 = −
ℎ𝑖+1

𝑔𝑖+1

≤ 1

2
(𝛿𝑖 − 𝛿𝑖+1), (4.9)

for all 𝑖 ∈ [𝑢, 𝑣]. Now, observe that for any 𝑖 ∈ [𝑢, 𝑣 − 2], we have

𝛿𝑖+1 − 𝛿𝑣 =
𝑣−1∑︁

𝑘=𝑖+1

𝛿𝑘 − 𝛿𝑘+1 ≤
1

2

𝑣−1∑︁
𝑘=𝑖+1

(𝛿𝑘−1 − 𝛿𝑘) =
1

2
(𝛿𝑖 − 𝛿𝑣−1) <

1

2
(𝛿𝑖 − 𝛿𝑣) .

Thus

𝛿𝑖+1 − 𝛿𝑣 <
1

2
(𝛿𝑖 − 𝛿𝑣) , (4.10)

and we can even extend the range of validity to 𝑖 ∈ [𝑢, 𝑣] since for 𝑖 = 𝑣 − 1 or 𝑖 = 𝑣, this

follows from Lemma 4.1.

Consider the submodular function 𝑘𝑣(𝑆) = 𝑓(𝑆)−𝛿𝑣𝑎(𝑆). We have denoted its minimum

value by ℎ𝑣 < 0 and 𝑆𝑣 is one of its minimizers. For each 𝑖 ∈ [𝑢, 𝑣 − 1] we have

𝑘𝑣(𝑆𝑖) = 𝑓𝑖 − 𝛿𝑣𝑔𝑖 = 𝑔𝑖(𝛿𝑖+1 − 𝛿𝑣),

and therefore 𝑘𝑣(𝑆𝑣−1) = 0 while 𝑘𝑣(𝑆𝑖) > 0 for 𝑖 ∈ [𝑢, 𝑣 − 2]. Furthermore, (4.10) implies

that

𝑘𝑣(𝑆𝑖) = 𝑔𝑖(𝛿𝑖+1 − 𝛿𝑣) <
1

2

𝑔𝑖
𝑔𝑖−1

𝑔𝑖−1(𝛿𝑖 − 𝛿𝑣) <
1

2
𝑔𝑖−1(𝛿𝑖 − 𝛿𝑣) =

1

2
𝑘𝑣(𝑆𝑖−1),

and this is valid for 𝑖 ∈ [𝑢, 𝑣 − 1]. Thus the 𝑘𝑣(𝑆𝑖)’s decrease geometrically with increasing

𝑖. In addition, we have 𝑘𝑣(𝑆𝑣−2) = 𝑔𝑣−2(𝛿𝑣−1 − 𝛿𝑣) while (by (4.9) and Lemma 4.1)

−𝑘𝑣(𝑆𝑣) = |ℎ𝑣| = −ℎ𝑣 = 𝑔𝑣(𝛿𝑣 − 𝛿𝑣+1) <
1

2
𝑔𝑣−2(𝛿𝑣−1 − 𝛿𝑣) =

1

2
𝑘𝑣(𝑆𝑣−2).

Summarizing, we have 𝑘𝑣(𝑆𝑣) = min𝑆 𝑘𝑣(𝑆) = ℎ𝑣, 𝑘𝑣(𝑆𝑣−1) = 0, 𝑘𝑣(𝑆𝑣−2) > 2|ℎ𝑣| and

98

𝑘𝑣(𝑆𝑖−1) > 2𝑘𝑣(𝑆𝑖) for 𝑖 ∈ [𝑢, 𝑣 − 1].

We now show that for any submodular function and any ring family on the same ground

set, the values attained by the submodular function cannot increase much when the ring

family is increased to the smallest ring family including a single additional set. This lemma

follows from the submodularity of 𝑓 and Birkhoff’s representation theorem for subsets con-

tained in a ring family.

Lemma 4.5. Let 𝑓 : 2𝐸 → R be a submodular function with 𝑓𝑚𝑖𝑛 = min𝑆⊆𝐸 𝑓(𝑆) ≤ 0. Let

ℒ be any ring family over 𝐸 and 𝑇 /∈ ℒ. Define ℒ′ := ℛ(ℒ ∪ {𝑇}), 𝑚 = max𝑆∈ℒ 𝑓(𝑆) and

𝑚′ = max𝑆∈ℒ′ 𝑓(𝑆). Then

𝑚′ ≤ 2(𝑚− 𝑓𝑚𝑖𝑛) + 𝑓(𝑇).

Proof. Consider 𝑆 ∈ ℒ′. Using (4.2), we can express 𝑆 as 𝑆 =
⋃︀

𝑖∈𝑆 𝑆𝑖 where 𝑆𝑖 can be either

(i) 𝑇 , or (ii) 𝑅 for some 𝑅 ∈ ℒ, or (iii) 𝑅∩𝑇 for some 𝑅 ∈ ℒ. Taking the union of the sets 𝑅

of type (ii), resp. (iii), into 𝑃 , resp. 𝑄, we can express 𝑆 as 𝑆 = 𝑃 ∪𝑇 or as 𝑆 = 𝑃 ∪ (𝑄∩𝑇)

where 𝑃,𝑄 ∈ ℒ (since the existence of any case (i) annihilates the need for case (iii)).

Now using submodularity, we obtain that

𝑓(𝑃 ∪ 𝑇) ≤ 𝑓(𝑃) + 𝑓(𝑇)− 𝑓(𝑃 ∩ 𝑇) ≤ 𝑚+ 𝑓(𝑇)− 𝑓𝑚𝑖𝑛,

in the first case and

𝑓(𝑃 ∪ (𝑄 ∩ 𝑇)) ≤ 𝑓(𝑃) + 𝑓(𝑄 ∩ 𝑇)− 𝑓(𝑃 ∩𝑄 ∩ 𝑇)

≤ 𝑓(𝑃) + 𝑓(𝑄) + 𝑓(𝑇)− 𝑓(𝑄 ∪ 𝑇)− 𝑓(𝑃 ∩𝑄 ∩ 𝑇)

≤ 2𝑚+ 𝑓(𝑇)− 2𝑓𝑚𝑖𝑛.

In either case, we get the desired bound on 𝑓(𝑆) for any 𝑆 ∈ ℛ′.

We will now use the bound in Lemma 4.5 to show that if a sequence of sets increases

in their submodular function value by a factor of 4, then any set in the sequence is not

contained in the ring family generated by the previous sets.

99

Theorem 14. Let 𝑓 : 2𝐸 → R be a submodular function with 𝑓𝑚𝑖𝑛 = min𝑆⊆𝐸 𝑓(𝑆) ≤ 0.

Consider a sequence of distinct sets 𝑇1, 𝑇2, · · · , 𝑇𝑞 such that 𝑓(𝑇1) = 𝑓𝑚𝑖𝑛, 𝑓(𝑇2) ≥ −2𝑓𝑚𝑖𝑛,

and 𝑓(𝑇𝑖) ≥ 4𝑓(𝑇𝑖−1) for 3 ≤ 𝑖 ≤ 𝑞. Then 𝑇𝑖 /∈ ℛ({𝑇1, · · · , 𝑇𝑖−1}) for all 1 < 𝑖 ≤ 𝑞.

Proof. This is certainly true for 𝑖 = 2. For any 𝑖 ≥ 1, define ℒ𝑖 = ℛ({𝑇1, · · · , 𝑇𝑖}) and

𝑚𝑖 = max𝑆∈ℒ𝑖
𝑓(𝑆). We know that 𝑚1 = 𝑓𝑚𝑖𝑛 ≤ 0 and 𝑚2 = 𝑓(𝑇2) since 𝑇1 ∩𝑇2 and 𝑇1 ∪𝑇2

cannot have larger 𝑓 values than 𝑇2 by submodularity of 𝑓 and minimality of 𝑇1.

We claim by induction that 𝑚𝑘 ≤ 2𝑓(𝑇𝑘) + 2𝑓𝑚𝑖𝑛 for any 𝑘 ≥ 2. This is true for 𝑘 = 2

since 𝑚2 = 𝑓(𝑇2) ≤ 2𝑓(𝑇2) + 2𝑓𝑚𝑖𝑛. Assume the induction claim to be true for 𝑘 − 1.

We get that 𝑚𝑘−1 ≤ 2𝑓(𝑇𝑘−1) + 2𝑓𝑚𝑖𝑛 < 4𝑓(𝑇𝑘−1). Since 𝑓(𝑇𝑘) > 𝑚𝑘−1, 𝑇𝑘 /∈ ℒ𝑘−1 =

ℛ(𝑇1, · · · , 𝑇𝑘−1). Using Lemma 4.5, we get that

𝑚𝑘 ≤ 2(𝑚𝑘−1 − 𝑓𝑚𝑖𝑛) + 𝑓(𝑇𝑘)

≤ 2(2𝑓(𝑇𝑘−1) + 2𝑓𝑚𝑖𝑛 − 𝑓𝑚𝑖𝑛) + 𝑓(𝑇𝑘)

≤ 2𝑓(𝑇𝑘) + 2𝑓𝑚𝑖𝑛.

Thus proving the induction step for 𝑘, and hence the statement of the theorem.

We are now ready to prove Theorem 13.

Proof. (of Theorem 13) Apply Theorem 14 to the submodular function 𝑘𝑣 given in Lemma

4.4. Let 𝑇1 = 𝑆𝑣 and skip every other set to define 𝑇𝑖 = 𝑆𝑣−2(𝑖−1) for 𝑣 − 2(𝑖 − 1) ≥ 𝑢

i.e. 𝑖 ≤ 𝑞 := 1 + (𝑣 − 𝑢)/2. Then the conditions of Theorem 14 are satisfied (thanks to

Lemma 4.4), and we obtain a sequence of sets 𝑇1, · · · , 𝑇𝑞 such that 𝑇𝑖 /∈ ℛ(𝑇1, · · · , 𝑇𝑖−1).

Therefore, Theorem 12 on the length of a chain of ring families implies that 𝑞 ≤
(︀
𝑛+1
2

)︀
+ 1,

or 𝑣 − 𝑢 ≤ (𝑛+ 1)𝑛. This means |[𝑢, 𝑣]| ≤ 𝑛2 + 𝑛+ 1.

Since Lemma 4.3 shows that |𝐽𝑔| = 𝑂(𝑛 log 𝑛) and we know from Theorem 13 that

the intervals between two indices of 𝐽𝑔 have length 𝑂(𝑛2), this implies that |𝐽𝑔| + |𝐽ℎ| =

𝑂(𝑛 log 𝑛) ·𝑂(𝑛2) = 𝑂(𝑛3 log 𝑛).

100

4.2.2 Quadratic upper bound

The analysis of Theorem 13 can be improved by showing that we can extract a chain of

ring families not just from one interval of 𝐽ℎ but from all of 𝐽ℎ. Instead of discarding every

other set in 𝐽ℎ, we also need to discard the first 𝑂(log 𝑛) sets in every interval of 𝐽ℎ. This

helps prove the main result of the paper that bounds the number of iterations in the discrete

Newton’s algorithm by at most 𝑛2 +𝑂(𝑛 log2 𝑛).

Theorem 15. We have |𝐽ℎ| = 𝑛2 +𝑂(𝑛 log2 𝑛).

Before proving this, we need a variant of Lemma 4.5. The proof of the lemma again follows

from the submodularity of 𝑓 and Birkhoff’s representation theorem for subsets contained in

a ring family.

Lemma 4.6. Let 𝒯 ⊆ 2𝐸 and assume that 𝑓(𝑆) ≤𝑀 for all 𝑆 ∈ 𝒯 . Then for all 𝑆 ∈ ℛ(𝒯)

𝑓(𝑆) ≤ 𝑛2

4
(𝑀 − 𝑓𝑚𝑖𝑛).

Proof. Consider any 𝑆 ∈ ℛ(𝒯). We know that 𝑆 =
⋃︀

𝑖∈𝑆
⋂︀

𝑗 /∈𝑆 𝑈𝑖𝑗, for some 𝑈𝑖𝑗 ∈ 𝒯 . Define

𝑆𝑖 =
⋂︀

𝑗 /∈𝑆 𝑈𝑖𝑗; thus 𝑆 =
⋃︀

𝑖∈𝑆 𝑆𝑖.

We first claim that, for any 𝑘 sets 𝑇1, 𝑇2, · · · , 𝑇𝑘 ∈ 𝒯 , we have that

𝑓(
𝑘⋂︁

𝑖=1

𝑇𝑖) ≤ 𝑘𝑀 − (𝑘 − 1)𝑓𝑚𝑖𝑛.

This is proved by induction on 𝑘, the base case of 𝑘 = 1 being true by our assumption on 𝑓 .

Indeed, applying submodularity to 𝑃 =
⋂︀𝑘−1

𝑖=1 𝑇𝑖 and 𝑇𝑘 (and the inductive hypothesis), we

get

𝑓(
𝑘⋂︁

𝑖=1

𝑇𝑖) = 𝑓(𝑃 ∩ 𝑇𝑘) ≤ 𝑓(𝑃) + 𝑓(𝑇𝑘)− 𝑓(𝑃 ∪ 𝑇𝑘)

≤ (𝑘 − 1)𝑀 − (𝑘 − 2)𝑓𝑚𝑖𝑛 +𝑀 − 𝑓𝑚𝑖𝑛 = 𝑘𝑀 − (𝑘 − 1)𝑓𝑚𝑖𝑛.

101

Using this claim, we get that for any 𝑖 ∈ 𝑆, we have

𝑓(𝑆𝑖) = 𝑓(
⋂︁
𝑗 /∈𝑆

𝑈𝑖𝑗) ≤ |𝐸 ∖ 𝑆|𝑀 − (|𝐸 ∖ 𝑆| − 1)𝑓𝑚𝑖𝑛

≤ |𝐸 ∖ 𝑆|(𝑀 − 𝑓𝑚𝑖𝑛).

By a similar argument on the union of the 𝑆𝑖’s, we derive that

𝑓(𝑆) ≤ |𝑆| (|𝐸 ∖ 𝑆|𝑀 − (|𝐸 ∖ 𝑆| − 1)𝑓𝑚𝑖𝑛))− (|𝑆| − 1)𝑓𝑚𝑖𝑛

≤ |𝑆||𝐸 ∖ 𝑆|𝑀 − (|𝑆||𝐸 ∖ 𝑆| − 1)𝑓𝑚𝑖𝑛

≤ 𝑛2

4
(𝑀 − 𝑓𝑚𝑖𝑛).

We are now ready to prove Theorem 15.

Proof. (of Theorem 15) Let 𝐽ℎ =
⋃︀ℓ

𝑖=1[𝑢𝑖, 𝑣𝑖] where 𝑢𝑖−1 > 𝑣𝑖 + 1 for 1 < 𝑖 ≤ ℓ. Notice

that these intervals are ordered in a reverse order (compared to the natural ordering). We

construct a sequence of sets 𝑇1, · · · such that each set in the sequence is not in the ring

closure of the previous ones. The first sets are just every other set 𝑆𝑖 from [𝑢1, 𝑣1] obtained

as before by using Theorem 14 and Lemma 4.4 with the submodular function 𝑘𝑣1 . Let 𝒯1
denote this sequence of sets.

Suppose now we have already considered the intervals [𝑢𝑗, 𝑣𝑗] for 𝑗 < 𝑖 and have extracted

a (long) sequence of sets 𝒯𝑖−1 such that each set in the sequence is not in the ring closure of

the previous ones. Consider now the submodular function 𝑓 := 𝑘𝑣𝑖 , and let 𝑓𝑚𝑖𝑛 ≤ 0 be its

minimum value. Notice that from the order of iterations in the discrete Newton’s algorithm

we have that 𝑓(𝑇) < 0 for 𝑇 ∈ 𝒯𝑖−1. Therefore by Lemma 4.6 with 𝑀 = 0 we have that

𝑓(𝑆) ≤ −𝑛2

4
𝑓𝑚𝑖𝑛 for all 𝑆 ∈ ℛ(𝒯𝑖−1). Using Lemma 4.4 with 𝑓 = 𝑘𝑣𝑖 , we have that only sets

𝑆𝑘 with 𝑘 > 𝑣𝑖 − log(𝑛2/4) could possibly be in ℛ(𝒯𝑖−1), and therefore we can safely add to

𝒯𝑖−1 every other set in [𝑢𝑖, 𝑣𝑖−𝑂(log𝑛)] while maintaining the property that every set is not in

the ring closure of the previous ones. Over all 𝑖, we have thus constructed a chain of ring

families of length 1
2
|𝐽ℎ| − 𝑂(log 𝑛)ℓ = 1

2
|𝐽ℎ| − 𝑂(log 𝑛)|𝐽𝑔|. The theorem now follows from

102

Lemma 4.3 and Theorem 12.

Finally, combining Theorem 15 and Lemma 4.3 proves Theorem 11.

Proof. (of Theorem 11.) In every iteration of discrete Newton’s algorithm, either 𝑔𝑖 or ℎ𝑖

decreases by a constant factor smaller than 1. Thus, the iterations can be partitioned into

two types 𝐽𝑔 =
{︁
𝑖 | 𝑔𝑖+1

𝑔𝑖
≤ 2

3

}︁
and 𝐽ℎ = {𝑖 /∈ 𝐽𝑔}. Lemma 4.3 shows that |𝐽𝑔| = 𝑂(𝑛 log 𝑛)

and Theorem 15 shows that |𝐽ℎ| = 𝑛2 +𝑂(𝑛 log2 𝑛). Thus, the total number of iterations is

𝑛2 +𝑂(𝑛 log2 𝑛).

4.3 Geometrically increasing sequences

In the proof for Theorem 11, we considered a sequence of sets 𝑆1, · · · , 𝑆𝑘 such that 𝑓(𝑆𝑖) ≥

4𝑓(𝑆𝑖−1) for all 𝑖 ≤ 𝑘 for submodular functions 𝑓 . In the special case when 𝑓 is modular,

we know that the maximum length of such a sequence is at most 𝑂(𝑛 log 𝑛) (Lemma 4.3).

When 𝑓 is submodular, we show that the maximum length is at most
(︀
𝑛+1
2

)︀
+1 by applying

Theorem 12 to Theorem 14. In this section, we show that the bound for the submodular

case is tight by constructing two related examples: one that uses interval sets of the ground

set {1, · · · , 𝑛}, and the other that assigns weights to arcs in a directed graph such that the

cut function already gives such a sequence of quadratic (in the number of vertices) number

of sets.

4.3.1 Interval submodular functions

In this section, we show that the bound for the submodular case is tight be constructing a

sequence of
(︀
𝑛+1
2

)︀
+ 1 sets ∅, 𝑆1, · · · , 𝑆(𝑛+1

2) for a submodular function 𝑓 , such that 𝑓(𝑆𝑖) =

4𝑓(𝑆𝑖−1) for all 𝑖 ≤
(︀
𝑛+1
2

)︀
.

For each 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, consider intervals [𝑖, 𝑗] = {𝑘 | 𝑖 ≤ 𝑘 ≤ 𝑗} and let the set

of all intervals be ℐ =
⋃︀

𝑖,𝑗{[𝑖, 𝑗]}. Let [𝑖, 𝑗] = ∅ whenever 𝑖 > 𝑗. Consider a set function

𝑓 : ℐ → R+ such that 𝑓(∅) = 0. We say 𝑓 is submodular on intervals if for any 𝑆, 𝑇 ∈ ℐ

103

such that 𝑆 ∪ 𝑇 ∈ ℐ and 𝑆 ∩ 𝑇 ∈ ℐ, we have

𝑓(𝑆) + 𝑓(𝑇) ≥ 𝑓(𝑆 ∪ 𝑇) + 𝑓(𝑆 ∩ 𝑇).

Lemma 4.7. Let 𝜏 and 𝜅 be monotonically increasing, nonnegative functions on the set [𝑛],

then 𝑓 defined by 𝑓([𝑖, 𝑗]) = 𝜏(𝑖)𝜅(𝑗) is submodular on intervals.

Proof. Consider two intervals 𝑆 and 𝑇 . The statement follows trivially if 𝑆 ⊆ 𝑇 , so consider

this is not the case. Let 𝑆 = [𝑠𝑖, 𝑠𝑗] and 𝑇 = [𝑡𝑖, 𝑡𝑗] and assume w.l.o.g that 𝑠𝑗 ≥ 𝑡𝑗.

i. Case 𝑆 ∩ 𝑇 ̸= ∅. This implies 𝑡𝑖 < 𝑠𝑖 and 𝑠𝑖 ≤ 𝑡𝑗 ≤ 𝑠𝑗. In this case, 𝑓(𝑆) +

𝑓(𝑇) − 𝑓(𝑆 ∩ 𝑇) − 𝑓(𝑆 ∪ 𝑇) = 𝜏(𝑠𝑖)𝜅(𝑠𝑗) + 𝜏(𝑡𝑖)𝜅(𝑡𝑗) − 𝜏(𝑠𝑖)𝜅(𝑡𝑗) − 𝜏(𝑡𝑖)𝜅(𝑠𝑗) =

(𝜏(𝑠𝑖)− 𝜏(𝑡𝑖))(𝜅(𝑠𝑗)− 𝜅(𝑡𝑗)) ≥ 0.

ii. Case 𝑆 ∩ 𝑇 = ∅, 𝑆 ∪ 𝑇 = [𝑡𝑖, 𝑠𝑗]. In this case, 𝑓(𝑆) + 𝑓(𝑇)− 𝑓(𝑆 ∪ 𝑇) = 𝜏(𝑠𝑖)𝜅(𝑠𝑗) +

𝜏(𝑡𝑖)𝜅(𝑡𝑗)− 𝜏(𝑡𝑖)𝜅(𝑠𝑗) ≥ 𝜅(𝑠𝑗)(𝜏(𝑠𝑖)− 𝜏(𝑡𝑖)) ≥ 0.

We show that one can extend any function that is submodular on intervals to a submod-

ular function (defined over the ground set). This construction is general, and might be of

independent interest. For any set 𝑆 ⊆ 𝐸, define ℐ(𝑆) to be the set of maximum intervals

contained in 𝑆. For example, for 𝑆 = {1, 2, 3, 6, 9, 10}, ℐ(𝑆) = {[1, 3], [6, 6], [9, 10]}.

Lemma 4.8. Consider a set function 𝑓 defined over intervals such that (i) 𝑓(∅) = 0, (ii)

𝑓([𝑖, 𝑗]) ≥ 0 for interval [𝑖, 𝑗], (iii) for any 𝑆, 𝑇 ∈ ℐ such that 𝑆∩𝑇, 𝑆∪𝑇 ∈ ℐ, 𝑓(𝑆)+𝑓(𝑇) ≥

𝑓(𝑆∪𝑇)+𝑓(𝑆∩𝑇). Then, 𝑔(𝑆) =
∑︀

𝐼∈ℐ(𝑆) 𝑓(𝐼) is submodular over the ground set {1, . . . , 𝑛}.

Proof. We will show that 𝑔 is submodular by proving that for any 𝑇 ⊆ 𝑆 and any 𝑘 /∈ 𝑆,

𝑔(𝑆 ∪{𝑘})− 𝑔(𝑆) ≤ 𝑔(𝑇 ∪{𝑘})− 𝑔(𝑇). Let the marginal gain obtained by adding 𝑘 to S be

𝑔𝑘(𝑆) = 𝑔(𝑆 ∪ {𝑘})− 𝑔(𝑆).

Note that ℐ(𝑆∪𝑘)∖ℐ(𝑆) can either contain (i) [𝑠, 𝑘], for some 𝑠 ≤ 𝑘, or (ii) [𝑘, 𝑢], for some

𝑢 > 𝑘, or (iii) [𝑠, 𝑢] for 𝑠 ≤ 𝑘 ≤ 𝑢. In case (i), 𝑔𝑘(𝑆) = 𝑓([𝑠, 𝑘]) − 𝑓([𝑠, 𝑘 − 1]); in case (ii),

𝑔𝑘(𝑆) = 𝑓([𝑘, 𝑢])−𝑓([𝑘+1, 𝑢]); and in case (iii), 𝑔𝑘(𝑆) = 𝑓([𝑠, 𝑢])−𝑓([𝑠, 𝑘−1])−𝑓([𝑘+1, 𝑢]).

104

Thus, when comparing the values of 𝑔𝑘(𝑆) and 𝑔𝑘(𝑇), we are only concerned with intervals

that are modified due to the addition of 𝑘.

Let 𝑆∪{𝑘} contain the interval [𝑠, 𝑘−1]∪{𝑘}∪ [𝑘+1, 𝑢] and 𝑇 ∪{𝑘} contain the interval

[𝑡, 𝑘 − 1] ∪ {𝑘} ∪ [𝑘 + 1, 𝑣] where 𝑠 ≤ 𝑡, 𝑣 ≤ 𝑢 (as 𝑇 ⊆ 𝑆) and 𝑠 ≤ 𝑘 ≤ 𝑢 (𝑠 = 𝑘 implies

[𝑠, 𝑘−1] = ∅ and 𝑢 = 𝑘 implies that [𝑘+1, 𝑢] = ∅) and 𝑡 ≤ 𝑘 ≤ 𝑣 (𝑡 = 𝑘 implies [𝑡, 𝑘−1] = ∅

and 𝑣 = 𝑘 implies that [𝑘 + 1, 𝑣] = ∅).

𝑔(𝑆 ∪ {𝑘})− 𝑔(𝑆)− 𝑔(𝑇 ∪ {𝑘}) + 𝑔(𝑇)

= 𝑓([𝑠, 𝑢])− 𝑓([𝑠, 𝑘 − 1])− 𝑓([𝑘 + 1, 𝑢])− (𝑓([𝑡, 𝑣])− 𝑓([𝑡, 𝑘 − 1])− 𝑓([𝑘 + 1, 𝑣]))

= 𝑓([𝑠, 𝑢])− 𝑓([𝑠, 𝑘 − 1])− 𝑓([𝑘 + 1, 𝑢])− 𝑓([𝑡, 𝑣]) + 𝑓([𝑡, 𝑘 − 1]) + 𝑓([𝑘 + 1, 𝑣])

≤ 𝑓([𝑠, 𝑢])− 𝑓([𝑠, 𝑘 − 1])− 𝑓([𝑘 + 1, 𝑣])− 𝑓([𝑡, 𝑢]) + 𝑓([𝑡, 𝑘 − 1]) + 𝑓([𝑘 + 1, 𝑣]) (4.11)

= 𝑓([𝑠, 𝑢])− 𝑓([𝑠, 𝑘 − 1])− 𝑓([𝑡, 𝑢]) + 𝑓([𝑡, 𝑘 − 1]) ≤ 0. (4.12)

where (4.11) follows from submodularity of 𝑓 on intervals [𝑘 + 1, 𝑢] and [𝑡, 𝑣], i.e., 𝑓([𝑘 +

1, 𝑢]) + 𝑓([𝑡, 𝑣]) ≥ 𝑓([𝑡, 𝑢]) + 𝑓([𝑘 + 1, 𝑣]), and (4.12) follows from submodularity of 𝑓 on

intervals [𝑠, 𝑘 − 1] and [𝑡, 𝑢].

Construction. Consider the function 𝑓([𝑖, 𝑗]) = 4
𝑗(𝑗−1)

2 4𝑖 for [𝑖, 𝑗] ∈ ℐ, obtained by

setting 𝜏(𝑖) = 4𝑖 and 𝜅(𝑗) = 4
𝑗(𝑗−1)

2 . This is submodular on intervals from Lemma 4.7. This

function defined on intervals can be extended to a submodular function 𝑔 by Lemma 4.8.

Consider the total order ≺ defined on intervals [𝑖, 𝑗] specified in example 1 (Section 2). By

our choice of 𝜏 and 𝜅 we have that 𝑆 ≺ 𝑇 implies 4𝑔(𝑆) ≤ 𝑔(𝑇). The submodular function

𝑔 thus contains a sequence of length
(︀
𝑛+1
2

)︀
+ 1 of sets that increase geometrically in their

function values.

4.3.2 Cut functions

The example from the previous section and the Birkhoff representation theorem motivates

a construction of a complete directed graph 𝐺 = (𝑉,𝐴) (|𝑉 | = 𝑛) and a weight vector

𝑤 ∈ R|𝐴|
+ such that there exists a sequence of 𝑚 =

(︀
𝑛
2

)︀
sets ∅, 𝑆1, · · · , 𝑆𝑚 ⊆ 𝑉 that has

𝑤(𝛿+(𝑆𝑖)) ≥ 4𝑤(𝛿+(𝑆𝑖−1)) for all 𝑖 ≥ 2.

105

Construction. The sets 𝑆𝑖 are all intervals of [𝑛− 1], and are ordered by the complete

order ≺ as defined previously. One can verify that the 𝑘th set 𝑆𝑘 in the sequence is 𝑆𝑘 = [𝑖, 𝑗]

where 𝑘 = 𝑖+ 𝑗(𝑗 − 1)/2.

Note that, if 𝑖 > 1, for each interval [𝑖, 𝑗], arc 𝑒𝑖,𝑗 := (𝑗, 𝑖− 1) ∈ 𝛿+([𝑖, 𝑗]) and (𝑗, 𝑖− 1) /∈

𝛿+([𝑠, 𝑡]) for any (𝑠, 𝑡) ≺ (𝑖, 𝑗). For any interval [1, 𝑗], arc 𝑒1,𝑗 := (𝑗, 𝑗 + 1) ∈ 𝛿+([1, 𝑗]) and

(𝑗, 𝑗 + 1) /∈ 𝛿+([𝑠, 𝑡]) for any (𝑠, 𝑡) ≺ (1, 𝑗). Define arc weights 𝑤 by 𝑤(𝑒𝑖,𝑗) = 5𝑖+𝑗(𝑗−1)/2.

Thus, the arcs 𝑒𝑖,𝑗 corresponding to the intervals [𝑖, 𝑗] increase in weight by a factor of 5. We

claim that 𝑤(𝛿+(𝑆𝑘)) ≥ 4𝑤(𝛿+(𝑆𝑘−1)). This is true because 4
∑︀

𝑒𝑠,𝑡:(𝑠,𝑡)≺(𝑖,𝑗) 𝑤(𝑒𝑠,𝑡) ≤ 𝑤(𝑒𝑖,𝑗).

106

Chapter 5

Approximate Generalized Counting

“What we see depends mainly on what we look for.”
- John Lubbock.

In this chapter, we consider a popular online learning algorithm, the multiplicative

weights update method, and its application to online linear optimization over over com-

binatorial structures as well as to do convex optimization over combinatorial polytopes. In

Chapters 3 and 4, we restricted our attention to submodular polytopes, however in this chap-

ter our combinatorial decision sets need not be submodular. We still define the combinatorial

structures over a ground set 𝐸, for instance one can think of matchings defined on a graph

𝐺 = (𝑉,𝐸) where 𝐸 is the set of edges (and also the ground set for representing matchings).

We refer the reader to Section 2.2.3 for background on online learning and review here the

multiplicative weights update algorithm (MWU) for learning over 𝒰 combinatorial strategies

here1. For instance, 𝒰 can be the set of matchings in a bipartite graph or the set of spanning

trees in a given graph.

The multiplicative weights update is an extremely intuitive (see (2.15) for definition)

online learning algorithm. It starts with the uniform distribution over all the strategies 𝒰 ,

and simulates an iterative procedure where the learner plays a mixed strategy 𝑝(𝑡) in each

round 𝑡. In response, the adversary (or the environment) selects a loss vector 𝐿(𝑡) ∈ [−1, 1]|𝒰|

1We present here the full-information setting, where the losses for each strategy (whether played or not)
are observed by the learner. The results would also go through in the semi-bandit case, where the losses
corresponding to the elements (for e.g. edges) in the selected combinatorial strategy (for e.g. spanning trees)
are observed.

107

for round 𝑡. The learner observes losses for all the pure strategies in 𝒰 and incurs loss equal

to the expected loss of their mixed strategy, i.e. 𝑙𝑜𝑠𝑠(𝑡) =
∑︀

𝑢∈𝒰 𝑝(𝑡)(𝑢)𝐿(𝑡)(𝑢). Subsequently,

the learner updates their mixed strategy by lowering the weight of each pure strategy 𝑢 ∈ 𝒰

by a factor of exp(−𝜂𝐿(𝑡)(𝑢)) for a fixed constant 𝜂 < 1. That is, for each round 𝑡 ≥ 1, the

updates in the MWU algorithm are as follows, starting with 𝑤(1)(𝑢) = 1 for all 𝑢 ∈ 𝒰 :

𝑤(𝑡+1)(𝑢) = 𝑤(𝑡)(𝑢) exp(−𝜂𝐿(𝑡)(𝑢)) ∀𝑢 ∈ 𝒰 .

Standard analysis of the MWU algorithm shows that the average regret over 𝑇 rounds

scales as 𝑂(
√︀

1/𝑇) (see for e.g. [Arora et al., 2012]). We include a proof in Theorem 16

for completeness. However, as the algorithm is described, it requires 𝑂(|𝒰|) updates to the

probability distribution 𝑝(𝑡) in each round 𝑡. We are concerned with simulating the MWU

algorithm over combinatorial sets, such as spanning trees, bipartite matchings, and these are

typically exponential in number in the input of the problem. We represent these strategies

with a 0/1 polytope 𝑃 ⊆ R𝑛, where 𝒰 = vert(𝑃), the vertex set of 𝑃 . Thus, having a

running time of 𝑂(|𝒰|) per iteration is not practical or polynomial in the input size. The

first question we consider is if we can do better.

(P3.1): Under what conditions, can the MWU algorithm be simulated in logarithmic time in

the number of combinatorial strategies, i.e. polynomial in log(|𝒰|)?

Informally, our main result in Section 5.1 is that if there exists an efficient algorithm to

compute (even approximately) the marginals corresponding to a product distribution over

the vertex set 𝒰 , then one can simulate efficiently the MWU algorithm over the polytope

𝑃 in time polynomial in 𝑛. A product distribution 𝑝 over 𝒰 ⊆ {0, 1}𝑛 is such that 𝑝(𝑢) ∝∏︀
𝑒:𝑢(𝑒)=1 𝜆(𝑒) for some vector 𝜆 ∈ R𝑛

>0. To be able to compute the marginal point, we require

access to a generalized (approximate) counting oracle M𝜖, that given 𝜆 ∈ R𝑛
>0, computes 𝑍𝜆

and 𝑥̃ ∈ R𝑛 such that the following hold:

(i) (1− 𝜖)𝑍𝜆 ≤ 𝑍𝜆 ≤ (1 + 𝜖)𝑍𝜆, (5.1)

108

(ii) ∀𝑒 ∈ 𝐸, (1− 𝜖)𝑥𝜆(𝑒) ≤ 𝑥̃𝜆(𝑒) ≤ (1 + 𝜖)𝑥𝜆(𝑒), (5.2)

where 𝑍𝜆 =
∑︀

𝑢∈𝒰
∏︀

𝑒:𝑢(𝑒)=1 𝜆(𝑒) and 𝑥𝜆 is the marginal point corresponding to the product

distribution. Note that for any 𝑠 ∈ 𝐸,

𝑥𝜆(𝑠) =
∑︁

𝑢∈𝒰 :𝑢(𝑠)=1

∏︁
𝑒:𝑢(𝑒)=1

𝜆(𝑒).

Next, we look deeper into the fact that the MWU algorithm over 𝑁 experts is a special

case of the online mirror descent algorithm on the 𝑁 -dimensional simplex Δ𝑁 = {𝑥 ∈

R𝑁
+ |

∑︀
𝑒 𝑥(𝑒) = 1} under the entropic divergence (i.e. KL-divergence) and the 𝐿1-norm

(see Lemma 5.2). This equivalence follows from the observation that the KL-divergence

projection of any vector 𝑤 ∈ R𝑁
>0 over an N-dimensional simplex is obtained by normalizing

𝑤 by its 𝐿1 norm, i.e.

arg min
𝑧∈Δ𝑁

𝑁∑︁
𝑖=1

(𝑧𝑖 ln(
𝑧𝑖
𝑤𝑖

)− 𝑧𝑖 + 𝑤𝑖) = 𝑤/||𝑤||1. (5.3)

An approximate generalized counting oracle thus gives an efficient way of computing ap-

proximate projections onto a high-dimensional simplex. However, we know that any polytope

can be equivalently expressed a convex hull of its vertices 𝒰 using probability distributions

over 𝒰 . In Section 5.2, we partially answer the following question:

(P3.2): What are the implications of being able to compute projections efficiently in a

different representation of the polytope?

Our main result in Section 5.2, informally, is that efficient generalized counting oracles

over the vertex set 𝒰 of a 0/1 polytope 𝑃 can be used to compute projections over Δ|𝒰|, and

this in turn can be used in conjunction with mirror descent (and its variants) to minimize

convex functions over 𝑃 (without requiring to compute projections over 𝑃 itself).

109

5.1 Online linear optimization

In order to simulate the MWU algorithm over an exponentially sized vertex set 𝒰 of a 0/1

polytope 𝑃 ⊆ R𝑛, we should be able to (i) represent the loss vector compactly (in dimension

𝑛) or allow oracle access to the loss vector, (ii) update the probability distribution efficiently

given the losses in any round 𝑡. Recently, in a work by [Hazan and Koren, 2015], it was

shown that any online algorithm requires 𝑂̃(
√
𝑁) time to approximate the value of an 𝑁 -

strategy two-player zero-sum game, even when given access to constant time best-response

oracles. It was known as early as 1951 [Robinson, 1951] that Nash-equilibria for two-player

zero-sum games can be found by simulating an online learning algorithm: one of the player

acts as a learner while the other generates adversarial losses and the average of the strategies

played by each player converges to an approximate equilibrium. The connection on online

learning with two-player games is discussed in more detail in Chapter 6. However, what this

implies for the MWU algorithm in our case, is that under no assumptions on the structure

of the loss function it is not possible to achieve a running time for the algorithm better than

𝑂(
√︀
|𝒰|).

We assume here that the losses can be compactly represented as linear functions over

the vertices, such that 𝐿(𝑡)(𝑢) = 𝑢𝑇 𝑙(𝑡) for all 𝑢 ∈ 𝒰 , for some 𝑙(𝑡) ∈ R𝑛. The marginal

point corresponding to the probability distribution 𝑝(𝑡) over the vertices is simply 𝑥(𝑡) =∑︀
𝑢∈𝒰 𝑝(𝑡)(𝑢)𝑢. Since 𝑥(𝑡) is a convex combination of the vertices, it lies in 𝑃 . Interestingly,

the linearity of the loss functions extends to the marginal point and it is easy to show that

the expected loss in round 𝑡 is 𝑝(𝑡)𝑇𝐿(𝑡) =
∑︀

𝑢∈𝒰 𝑝(𝑡)(𝑢)𝑢𝑇 𝑙(𝑡) = 𝑥(𝑡)𝑇 𝑙(𝑡).

Product distributions For linear loss functions, one can simulate the MWU algorithm

in time polynomial in 𝑛, by the use of product distributions : 𝑝 ∈ [0, 1]|𝒰| over the set 𝒰 such

that 𝑝(𝑢) ∝
∏︀

𝑒∈𝑢 𝜆𝑒 for all 𝑢 ∈ 𝒰 and some vector 𝜆 ∈ R𝑛
>0. We refer to the 𝜆 vector as

the multiplier vector of the product distribution. The two key observations we make here

are that product distributions can be updated efficiently by updating only the multipliers (for

linear loss functions), and multiplicative updates on a product distribution result in a product

distribution again.

To argue that the MWU can work by updating only product distributions, suppose first

110

that in some iteration 𝑡 of the MWU algorithm, we are given a product distribution 𝑝(𝑡) over

the vertex set 𝒰 implicitly by its multiplier vector 𝜆(𝑡) ∈ R𝑛, and a loss vector 𝑙(𝑡) ∈ R𝑛 is

revealed such that the loss of each vertex 𝑢 is 𝑢𝑇 𝑙(𝑡). In order to multiplicatively update the

probability of each vertex 𝑢 as

𝑝(𝑡+1)(𝑢) ∝ 𝑝(𝑡)(𝑢) exp(−𝜂𝑢𝑇 𝑙(𝑡)),

note that we can simply update the multipliers with the loss of each component.

𝑝(𝑡+1)(𝑢) ∝ 𝑝(𝑡)(𝑢) exp(−𝜂𝑢𝑇 𝑙(𝑡)) ∝

(︃∏︁
𝑒∈𝑢

𝜆(𝑡)(𝑒)

)︃
exp(−𝜂𝑢𝑇 𝑙(𝑡))

∝
∏︁
𝑒∈𝑢

(︀
𝜆(𝑡)(𝑒) exp(−𝜂𝑙(𝑡)(𝑒))

)︀
as 𝑢 ∈ {0, 1}𝑛. (5.4)

Hence, the resulting probability distribution 𝑝(𝑡+1) is also a product distribution, and we

can implicitly represent it in the form of the multipliers 𝜆(𝑡+1)(𝑒) = 𝜆(𝑡)(𝑒) exp(−𝜂𝑙(𝑡)(𝑒)) for

𝑒 ∈ 𝐸 in the next round of the MWU algorithm. It is easy to start with a uniform distribution

over all vertices in this representation, by simply setting 𝜆(1)(𝑒) = 1 for all 𝑒 ∈ 𝐸. Thus, in

different rounds of the MWU algorithm, we move from one product distribution to another.

The proof follows from the standard regret analysis for the MWU algorithm, but we include

it here for completeness.

Theorem 16. Assume that all costs 𝐿(𝑡) ∈ [−1, 1]𝒰 such that 𝐿(𝑡)(𝑢) = 𝑢𝑇 𝑙(𝑡) for some

𝑙(𝑡) ∈ R𝑛 and 𝜂 ≤ 1. Then, the MWU algorithm with product distributions guarantees that

after 𝑇 rounds, we have

𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) −min
𝑥∈𝑃

𝑇∑︁
𝑡=1

𝑥𝑇 𝑙(𝑡) ≤ 𝜂𝑇 +
ln |𝒰|
𝜂

. (5.5)

Proof. We want to show that the updates to the weights of each vertex 𝑢 ∈ 𝒰 = vert(𝑃)

(recall 𝑃 ⊆ R𝑛) can be done efficiently. For the multipliers 𝜆(𝑡) in each round, let 𝑤(𝑡)(𝑢)

be the unnormalized probability for each vertex 𝑢, i.e., 𝑤(𝑡)(𝑢) =
∏︀

𝑒:𝑢(𝑒)=1 𝜆
(𝑡)(𝑒). Let 𝑍(𝑡)

be the normalization constant for round 𝑡, i.e., 𝑍(𝑡) =
∑︀

𝑢∈𝒰 𝑤(𝑡)(𝑢). Thus, the probability

111

of each vertex 𝑢 is 𝑝(𝑡)(𝑢) = 𝑤(𝑡)(𝑢)/𝑍(𝑡). We assume that for each round 𝑡, the losses

𝐿(𝑡)(𝑢) ∈ [−1, 1] for all 𝑢 ∈ 𝒰 , or equivalently 𝑢𝑇 𝑙(𝑡) ∈ [−1, 1] for all 𝑢 ∈ 𝒰 .

The algorithm starts with 𝜆(1)(𝑒) = 1 for all 𝑒 ∈ 𝐸 and thus 𝑤(1)(𝑢) = 1 for all 𝑢 ∈ 𝒰 .

First note that,

𝑤(𝑡+1)(𝑢) =
∏︁
𝑒∈𝑢

𝜆(𝑡+1)(𝑒) =
∏︁
𝑒∈𝑢

𝜆(𝑡)(𝑒) exp(−𝜂𝑙(𝑡)(𝑒))

= exp(−𝜂𝑢𝑇 𝑙(𝑡))
∏︁
𝑒∈𝑢

𝜆(𝑡)(𝑒) . . . 𝑢 ∈ {0, 1}𝑚.

= 𝑤(𝑡)(𝑢) exp(−𝜂𝑢𝑇 𝑙(𝑡)) = 𝑤(1)(𝑢) exp(−𝜂
𝑇∑︁
𝑡=1

𝑢𝑇 𝑙(𝑡)). (5.6)

Next, we bound the partition function in round 𝑡+ 1.

𝑍(𝑡+1) =
∑︁
𝑢∈𝒰

𝑤(𝑡+1)(𝑢) =
∑︁
𝑢∈𝒰

𝑤(𝑡)(𝑢) exp(−𝜂𝑢𝑇 𝑙(𝑡)) (5.7)

≤
∑︁
𝑢∈𝒰

𝑤(𝑡)(𝑢)(1− 𝜂𝑢𝑇 𝑙(𝑡) + 𝜂2(𝑢𝑇 𝑙(𝑡))2) . . . 𝑒𝑥 ≤ 1 + 𝑥+ 𝑥2 for all 𝑥 ∈ [−1, 1].

(5.8)

=
∑︁
𝑢∈𝒰

𝑤(𝑡)(𝑢)− 𝜂
∑︁
𝑢∈𝒰

𝑤(𝑡)(𝑢)𝑢𝑇 𝑙(𝑡) + 𝜂2
∑︁
𝑢∈𝒰

𝑤(𝑡)(𝑢)(𝑢𝑇 𝑙(𝑡))2 (5.9)

= 𝑍(𝑡) − 𝜂𝑍(𝑡)𝑥(𝑡)𝑇 𝑙(𝑡) + 𝜂2𝑍(𝑡)
∑︁
𝑢∈𝒰

𝑝(𝑡)(𝑢)(𝑢𝑇 𝑙(𝑡))2 (5.10)

≤ 𝑍(𝑡) − 𝜂𝑍(𝑡)𝑥(𝑡)𝑇 𝑙(𝑡) + 𝜂2𝑍(𝑡) (5.11)

≤ 𝑍(𝑡) exp(−𝜂𝑥(𝑡)𝑇 𝑙(𝑡) + 𝜂2) . . . (1 + 𝑥) ≤ 𝑒𝑥 ∀ 𝑥. (5.12)

Rolling out the above till the first round, we get

𝑍(𝑡+1) ≤ 𝑍(1) exp(−𝜂
𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) + 𝑇𝜂2). (5.13)

Since 𝑤(𝑡+1)(𝑢) ≤ 𝑍(𝑡+1) for all 𝑢 ∈ 𝒰 , using (5.6) we get

𝑤(1)(𝑢) exp(−𝜂
𝑇∑︁
𝑡=1

𝑢𝑇 𝑙(𝑡)) ≤ 𝑍(1) exp(−𝜂
𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) + 𝑇𝜂2) (5.14)

112

⇒ ln𝑤(1)(𝑢)− 𝜂

𝑇∑︁
𝑡=1

𝑢𝑇 𝑙(𝑡) ≤ ln𝑍(1) − 𝜂

𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) + 𝑇𝜂2 (5.15)

⇒
𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) ≤
𝑇∑︁
𝑡=1

𝑢𝑇 𝑙(𝑡) + 𝑇𝜂 +
ln |𝒰|
𝜂

. . . 𝜂 > 0, 𝑤(1)(𝑢) = 1, 𝑍(1) = |𝒰|. (5.16)

and the statement of the theorem follows.

Corollary 2. Setting 𝜂 =
√︁

ln |𝒰|
𝑇

in (5.16), shows that the average regret scales as 𝑂(
√︁

ln |𝑈 |
𝑇

):

1

𝑇

𝑇∑︁
𝑡=1

𝑥(𝑡)𝑇 𝑙(𝑡) − 1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑇 𝑙(𝑡) ≤ 2

√︂
ln |𝒰|
𝑇

.

We would like to draw attention to the fact that, by the use of product distributions, we

are not restricting the online algorithms to search over a subset of marginal points. We can

indeed restrict our attention to product distributions without loss of generality; any point

in a 0/1 polytope can be decomposed into a product distribution. We include a proof of the

following lemma for completeness. (In Section 5.2, we also show that the MWU algorithm

can be used to (approximately) compute the product distribution corresponding to any given

marginal point.)

Lemma 5.1 ([Asadpour et al., 2010], [Singh and Vishnoi, 2014]). Given a vector 𝑧 in the

relative interior of a 0/1 polytope 𝑃 ⊆ R𝑛, there exist 𝛾*
𝑒 for all 𝑒 ∈ 𝐸 such that if we sample

a vertex 𝑢 of 𝑃 according to 𝑝*(𝑢) = exp(𝛾*(𝑢)), then P(𝑒 ∈ 𝑢) = 𝑧(𝑒) for every 𝑒 ∈ 𝐸.

Proof. The maximum entropy distribution 𝑝*(·) with respect to given marginal probabilities

𝑧 ∈ 𝑃 is the optimum solution of the following convex problem:

(CP) = inf
∑︁
𝑢∈𝒰

𝑝(𝑢) log 𝑝(𝑢)

s.t.
∑︁
𝑇 :𝑒∈𝑇

𝑝(𝑢) = 𝑧(𝑒) ∀𝑒 ∈ 𝐸,

∑︁
𝑢∈𝒰

𝑝(𝑢) = 1, 𝑝(𝑢) ≥ 0 ∀𝑢 ∈ 𝒰 .

113

This convex program is feasible whenever 𝑧 belongs to the relative interior of the polytope

𝑃 . As the objective function is bounded and the feasible region is compact (closed and

bounded), the infimum is attained and there exists an optimum solution 𝑝*(·). Furthermore,

since the objective functions is strictly convex, this maximum entropy distribution 𝑝*(·) is

unique. Let 𝑂𝑃𝑇(𝐶𝑃) denote the optimum value of this convex program (CP).

The value 𝑝*(𝑢) determines the probability of sampling any vertex 𝑢 in the maximum

entropy rounding scheme. We now want to show that, if we assume that 𝑧 is in the relative

interior of the polytope, then 𝑝*(𝑢) > 0 for every 𝑢 ∈ 𝒰 and 𝑝*(𝑢) admits a simple exponential

formula. Let us write the Lagrange dual to the convex program (CP). For every 𝑒 ∈ 𝐸, we

associate a Lagrange multiplier 𝛿𝑒 to the constraint corresponding to the marginal probability

𝑧(𝑒), and define the Lagrange function by

𝐿(𝑝, 𝛿, 𝜃) =
∑︁
𝑢∈𝒰

𝑝(𝑢) log 𝑝(𝑢)−
∑︁
𝑒∈𝐸

𝛿𝑒
(︀ ∑︁
𝑢:𝑒∈𝑢

𝑝(𝑢)− 𝑧(𝑒)
)︀
− 𝜃(

∑︁
𝑢∈𝒰

𝑝(𝑢)− 1),

=
∑︁
𝑒∈𝐸

𝛿𝑒𝑧(𝑒) + 𝜃 +
∑︁
𝑢∈𝒰

(︀
𝑝(𝑢) log 𝑝(𝑢)− 𝑝(𝑢)

∑︁
𝑒∈𝑢

𝛿𝑒 − 𝜃𝑝(𝑢)
)︀
.

The Lagrange dual to CP is now

sup
𝛿,𝜃

inf
𝑝≥0

𝐿(𝑝, 𝛿, 𝜃). (5.17)

The inner infimum in this dual is easy to solve. As the contributions of the 𝑝(𝑢)′s

are separable, we have that, for every 𝑢 ∈ 𝒰 , 𝑝(𝑢) must minimize the convex function

𝑝(𝑢) log 𝑝(𝑢) − 𝑝(𝑢)
∑︀

𝑒∈𝑢 𝛿𝑒 − 𝜃𝑝(𝑢). This minimum is given by 𝑝(𝑢) = exp(𝛿(𝑢) + 𝜃 − 1),

where 𝛿(𝑢) =
∑︀

𝑒∈𝑢 𝛿𝑒. Thus,

𝑔(𝛿, 𝜃) = inf
𝑝≥0

𝐿(𝑝, 𝛿, 𝜃) =
∑︁
𝑒∈𝐸

𝛿𝑒𝑧𝑒 + 𝜃 −
∑︁
𝑢∈𝒰

exp(𝛿(𝑢) + 𝜃 − 1), (5.18)

and the dual becomes to solve sup𝛿,𝜃 𝑔(𝛿, 𝜃). Optimizing 𝑔(𝛿, 𝜃) over 𝜃, we get

1− 𝑒𝜃−1
∑︁
𝑢∈𝒰

exp(𝛿(𝑢)) = 0 (5.19)

114

⇒ 𝑒𝜃−1 = 1/
∑︁
𝑢∈𝒰

exp(𝛿(𝑢)). (5.20)

Thus, the dual problem reduces to

sup
𝛿

𝑔(𝛿) = sup
𝛿

∑︁
𝑒∈𝐸

𝛿𝑒𝑧𝑒 + 𝜃 − 1 = sup
𝛿

∑︁
𝑒∈𝐸

𝛿𝑒𝑧𝑒 − ln(
∑︁
𝑢∈𝒰

exp(𝛿(𝑢))). (5.21)

Since 𝑧 ∈ relint(𝑃) (relative interior of 𝑃), the primal-dual programs satisfy Slater’s condi-

tion and strong duality holds, implying the optimum value of 𝐶𝑃 and (5.21) are the same.

Moreover, by the strict concavity of the entropy function, the optimum is unique. Hence, at

optimality, 𝑝*(𝑢) = exp 𝛿*(𝑢)/
∑︀

𝑢∈𝒰 exp 𝛿*(𝑢), where 𝛿* and 𝑝* are optimal dual and primal

solutions respectively.

Product distributions thus allow us to maintain a distribution on (the exponentially sized)

𝒰 by simply maintaining 𝜆 ∈ R𝑛
>0. To be able to sample from these product distributions, or

output the marginal point or in some applications to even compute the loss vector in round

𝑡 (for instance when learning to find Nash-equilibria in two-player zero-sum games, as we

will see in Chapter 6), we require access to a generalized (approximate) counting oracle M𝜖

as defined in the introduction of this chapter (with conditions (5.1), (5.2)). For certain self-

reducible structures2 𝒰 [Schnorr, 1976] (such as spanning trees, matchings or Hamiltonian

cycles), the generalized approximate counting oracle can be replaced by a fully polynomial

approximate generator as shown by [Jerrum et al., 1986], i.e. being able to sample from

product distributions is sufficient.

Next suppose that the generalized counting oracle is approximate, and it introduces errors

in the marginal point corresponding to the product distribution. We show that the MWU

algorithm is robust to such errors. Since we always maintain the true 𝜆(𝑡) in each round, the

error due to the approximate counting oracle gets added to the regret bound of the MWU

algorithm.

2Informally, self-reducibility means that there exists an inductive construction of the combinatorial object
from a smaller instance of the same problem [Sinclair and Jerrum, 1989]. For example, conditioned on
whether an edge is taken or not, the problem of finding a spanning tree (or a matching) on a given graph
reduces to the problem of finding a spanning tree (or a matching) in a modified graph.

115

Corollary 3. Given a polynomial approximate generalized counting oracle M𝜖 such that

||𝑥𝜆 − 𝑥̃𝜆||∞ ≤ 𝜖 and assuming that all the loss vectors satisfy 𝐿(𝑡) ∈ [−1, 1]𝒰 , such that

𝐿(𝑡)(𝑢) = 𝑢𝑇 𝑙(𝑡) for some 𝑙(𝑡) ∈ R𝑛, 𝜂 < 1, then the MWU algorithm guarantees that after 𝑇

rounds, we have

𝑇∑︁
𝑡=1

𝑥̃(𝑡)𝑇 𝑙(𝑡) −min
𝑥∈𝑃

𝑇∑︁
𝑡=1

𝑥𝑇 𝑙(𝑡) ≤ 𝜂𝑇 +
ln𝒰
𝜂

+ 𝜖

𝑇∑︁
𝑡=1

‖𝑙(𝑡)‖1. (5.22)

Proof. Let the multipliers in each round 𝑡 be 𝜆(𝑡), the corresponding true and approximate

marginal points in round 𝑡 be 𝑥(𝑡) and 𝑥̃(𝑡) respectively, such that ||𝑥(𝑡) − 𝑥̃(𝑡)||∞ ≤ 𝜖1 (as in

the definition of approximate generalized counting oracles in (5.2)). The loss vectors in each

round are 𝑙(𝑡), such that loss of any pure strategy 𝑢 ∈ 𝒰 is 𝑢𝑇 𝑙(𝑡).

Even though we cannot compute 𝑥(𝑡) exactly, we do maintain multipliers 𝜆(𝑡)s that cor-

respond to the true marginals. Using the proof for Theorem 16, we get the following regret

bound with respect to the true marginals:

1

𝑡

𝑡∑︁
𝑖=1

𝑥(𝑖)𝑇 𝑙(𝑡) ≤ 1

𝑡

𝑡∑︁
𝑖=1

𝑢𝑇 𝑙(𝑖) + 𝑇𝜂 +
ln |𝒰|
𝜂

(5.23)

We do not have the value for 𝑥(𝑖) for 𝑖 = 1, . . . , 𝑡, but only estimates 𝑥̃(𝑖) for 𝑖 = 1, . . . , 𝑡

such that ||𝑥̃(𝑖) − 𝑥(𝑖)||∞ ≤ 𝜖1. Since the losses we consider are bilinear, we can bound the

loss of the estimated point in each iteration 𝑖 as follows:

|𝑥̃(𝑖)𝑇 𝑙(𝑖) − 𝑥(𝑖)𝑇 𝑙(𝑖)| ≤ 𝜖1𝑒
𝑇 𝑙(𝑖) ≤ 𝜖1‖𝑙(𝑖)‖1, (5.24)

where 𝑒 = (1, . . . , 1)𝑇 . Plugging in (5.24) in (6.8), we get the claim of the corollary.

The framework we developed in this chapter is general and allows one to plug in results

from the literature on generalized approximate counting (and sampling) of combinatorial

structures to be able to simulate the multiplicative weights update algorithm over these

strategies, efficiently. We next discuss some related work that can be viewed as a special

case of this framework.

116

Applications and related work One of the earliest use of product distributions to sim-

ulate the MWU algorithm efficiently was to learn the best pruning of a binary decision

diagram [Helmbold and Schapire, 1997]. Thereafter, Takimoto and Warmuth used a re-

cursive algorithm to count weighted paths in a graph while allowing for cycles [Takimoto

and Warmuth, 2003]. For learning over the spanning tree polytope, an exact generalized

counting algorithm follows from Kirchoff’s matrix theorem (attributed first to a result by

Gustav Kirchhoff in 1847, and David Wilson gave an algorithm for generating spanning tree

uniformly at random [Wilson, 1996], see also [Lyons and Peres, 2005]) that states that the

value of
∑︀

𝑇

∏︀
𝑒∈𝑇 𝜆𝑒 is equal to the value of the determinant of any cofactor of the weighted

Laplacian of the graph. One can use fast Laplacian solvers (see for e.g., [Koutis et al., 2010])

for obtaining an efficient approximate marginal oracle. Kirchhoff’s determinantal formula

also extends to (exact) counting of bases of regular matroids (see for e.g., [Welsh, 2009]). For

learning over the bipartite matching polytope (i.e., rankings), one can use the randomized

generalized approximate counting oracle from [Jerrum et al., 2004] for computing perma-

nents to obtain a feasible marginal oracle. Note that the problem of counting the number of

perfect matchings exactly in a bipartite graph is #P-complete as it is equivalent to comput-

ing the permanent of a 0/1 matrix [Valiant, 1979]. The problem of approximately counting

the number of perfect matchings in a general graph is however a long standing open prob-

lem. Other examples of polytopes that admit polynomial approximate counting oracles are

the 0 − 1 circulations in directed graphs or subgraphs with pre-specified degree sequences

[Jerrum et al., 2004] and the cycle cover polytope (or 0−1 circulations) over directed graphs

[Singh and Vishnoi, 2014]. We summarize related work that used product distributions for

simulating the MWU in polynomial time over certain combinatorial strategies.

5.2 Convex optimization

In this section, we show that any convex function ℎ : 𝑃 → R, defined over a 0/1 polytope

𝑃 ⊆ R𝑛 can be minimized using the framework defined above for online linear optimization

and efficient oracles for generalized counting over the vertex set 𝒰 of 𝑃 . We will use the

mirror descent algorithm and its variants (for different convexity properties of ℎ(·)), and

117

Combinatorial Structure Counting Oracle Efficient MWU
bounded depth binary decision
trees,

dynamic programming [Helmbold and Schapire, 1997]

general s-t paths (that allow for cy-
cles) in a graph, simple paths in a
directed acylic graph

dynamic programming [Takimoto and Warmuth,
2003]

Spanning trees [Wilson, 1996] [Koo et al., 2007]
Bipartite Matchings [Jerrum et al., 2004] [Koolen et al., 2010]
Bases of regular matroids [Welsh, 2009] this work
0-1 circulations in directed graphs
with pre-specified degree sequences

[Jerrum et al., 2004] this work

Cycle covers [Jerrum et al., 2004],
[Singh and Vishnoi, 2014]

this work

Table 5.1: List of known results for approximate counting over combinatorial strategies and efficient
simulation of the MWU algorithm using product distributions.

refer the reader to Section 2.2.2 for background and useful references.

Consider a convex function ℎ : 𝑃 → R that we would like to minimize over 𝑃 . Note that

each point 𝑥 ∈ 𝑃 can be written as a convex combination of the vertices of 𝑃 , i.e.,

𝑃𝑢 = {𝑥 | 𝑥 =
∑︁
𝑢∈𝒰

𝑝(𝑢)𝑢,
∑︁
𝑢∈𝒰

𝑝(𝑢) = 1, 𝑝 ≥ 0}. (5.25)

Here, 𝑝 is a probability distribution over the vertex set 𝒰 , i.e.

𝑝 ∈ Δ𝒰 = {𝑝 ∈ [0, 1]|𝒰| :
∑︁
𝑢

𝑝(𝑢) = 1, 𝑝 ≥ 0}.

We have represented 𝑃 by raising it to 𝑃𝑢 that lies an exponentially larger dimension (see

Figure 5-1 for an illustration). Note that 𝑔(𝑝) = ℎ(
∑︀

𝑢∈𝒰 𝑝(𝑢)𝑢) is also convex in 𝑝 ∈ R|𝒰| as

convexity is invariant under affine maps.

An extended formulation of a polytope 𝑃 ⊆ R𝑛 is a polytope in a higher dimension

𝑃𝑞 ⊆ R𝑛+𝑞 such that 𝑃 = proj𝑛(𝑃𝑞) := {𝑥 ∈ R𝑛|∃𝑦 ∈ R𝑞, (𝑥, 𝑦) ∈ 𝑃𝑞}. If the number of facets

of 𝑃𝑞 is polynomial in 𝑛, then the extended formulation is said to be compact. The number

of facets of the smallest possible extended formulation of a polytope is called its extension

complexity. Suppose a polytope 𝑃 has a small extension complexity 𝑥𝑐(𝑃𝑞), we can do linear

optimization over it efficiently by using a formulation with a small number of constraints (and

polynomial number of variables). The key idea behind the concept of extended formulations

118

Rn
n-2

Rn
2

Figure 5-1: An intuitive illustration to show a polytope in R𝑂(𝑛2) raised to the simplex of its
vertices, that lies in R𝑂(𝑛𝑛−2) space.

is to raise the polytope to a higher dimension so that linear optimization over it becomes

easier. By representing 𝑃 as 𝑃𝑢 we have in fact raised 𝑃 to a higher (exponential) dimension,

and we will show that this has made convex optimization over 𝑃 easier.

In Section 5.1, we showed that online linear optimization over combinatorial sets 𝒰 can

be done using the MWU algorithm as long as there exist efficient approximate counting

oracles over the vertex set of 𝑃 . Note that the gradient ∇𝑔 with respect to any vertex 𝑢

is (∇𝑔(𝑝))𝑢 = 𝜕ℎ(𝑝)
𝜕𝑝(𝑢)

=
∑︀

𝑒∈𝑢(∇ℎ(𝑥))𝑒 = ∇ℎ(𝑥)𝑇𝑢 when 𝑥 =
∑︀

𝑢∈𝒰 𝑝(𝑢)𝑢. Therefore, one

can use the framework for online linear optimization to optimize over 𝑔(·) as the losses in

each round 𝑙(𝑡) = ∇ℎ(𝑥(𝑡)) are linear over the vertex set. We give the complete description

of MWU algorithm for convex minimization, with the help of a pseudocode in Algorithm

9. The constants input in the algorithm are the Lipschitz constant of ℎ(·) with respect

to 𝐿1 norm, 𝐺ℎ; a scaling factor 𝜁 = max𝑢∈𝒰 ‖𝑢‖1; the radius 𝑅 of Δ𝒰 with respect to

the entropic mirror map; and the desired approximation factor 𝛿 in the objective function

value. Recall that the radius of Δ𝒰 with respect to any mirror map 𝜔(·) is defined as

𝑅2 = max𝑝∈Δ𝒰 𝜔(𝑝)−min𝑝∈Δ𝒰 𝜔(𝑝).

One can view Algorithm 9 as entropic online mirror descent over Δ𝒰 , which is equivalent

to the MWU algorithm over the set 𝒰 . We can simulate the latter efficiently by using

119

Algorithm 9: MWU for Convex Optimization
input : ℎ(·) : 𝑃 → R, counting oracle 𝑀𝜖, constants 𝐺ℎ > 0, 𝜁 > 0, 𝑅 > 0, 𝛿 > 0
output: 𝑥̃: ℎ(𝑥̃)−min𝑥∈𝑃 ℎ(𝑥) ≤ 𝛿

3 𝜆(1)(𝑒) = 1 for all 𝑒 ∈ 𝐸; 𝑇 =
2 ln(|𝒰|)𝜁2𝐺2

ℎ

𝛿2 ; 𝜂 = 𝑅
𝜁𝐺ℎ

√︁
2
𝑇 ; 𝑡 = 1; 𝑥̃ = 𝑀𝜖(𝜆

(1))

4 repeat
5 𝑥(𝑡) = 𝑀𝜖(𝜆

(𝑡))

6 if ℎ(𝑥(𝑡)) < ℎ(𝑥̃), then 𝑥̃ = 𝑥(𝑡).

7 𝑙(𝑡) = ∇ℎ(𝑥(𝑡))

8 𝜆(𝑡+1)(𝑒) = 𝜆(𝑡)(𝑒) exp(−𝜂𝑙(𝑡)(𝑒)) ∀𝑒 ∈ 𝐸
9 t = t+1

until 𝑡+ 1 ≤ 𝑇 ;

product distributions and updating corresponding multipliers 𝜆 that lie in a much smaller

space.

Lemma 5.2. The multiplicative weights update algorithm on 𝑛 strategies is the same as the

entropic online mirror descent on the simplex in R𝑛.

Proof. Consider the standard simplex Δ𝑛 = {𝑥 ∈ R𝑛 :
∑︀

𝑖 𝑥𝑖 = 1, 𝑥 ≥ 0} and the unnor-

malized entropy mirror map 𝜔(𝑥) =
∑︀

𝑖(𝑥𝑖 ln𝑥𝑖 − 𝑥𝑖). It is well-known that 𝜔 is 1-strongly

convex with respect to Δ𝑛 (for a short proof, see [Nesterov, 2005]). The corresponding di-

vergence is the KL-divergence, 𝐷𝜔(𝑥, 𝑦) =
∑︀

𝑖 𝑥𝑖 ln
𝑥𝑖

𝑦𝑖
−
∑︀

𝑖 𝑥𝑖 +
∑︀

𝑖 𝑦𝑖. The 𝜔-center of the

standard simplex Δ𝑛 is

𝑝(1) = argmin𝜔(𝑥) = arg min
𝑥∈Δ𝑛

∑︁
𝑖

𝑥𝑖 ln𝑥𝑖 = 1𝑛/𝑛, (5.26)

where 1𝑛 is the vector of all ones. This corresponds to the uniform probability distribution

over 𝑛 strategies, which is also the starting probability distribution in the MWU algorithm.

Next, the iterations of the entropic online mirror descent are (as discussed in Section 2.2.3),

𝑦(𝑡+1) = (∇𝜔)−1(∇𝜔(𝑝(𝑡))− 𝜂∇𝑙(𝑡)(𝑝(𝑡))) (5.27)

= (𝑝(𝑡)(1)𝑒−𝜂(∇𝑙(𝑡)(𝑝(𝑡)))1 , . . . , 𝑝(𝑡)(𝑛)𝑒−𝜂(∇𝑙(𝑡)(𝑝(𝑡)))𝑛) (5.28)

𝑝(𝑡+1) = arg min
𝑥∈Δ𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 ln(𝑥𝑖/𝑦
(𝑡+1)
𝑖). (5.29)

Note that (5.28) corresponds to multiplicative updates to each strategy by exponentiating

120

the gradient of the loss function, and (5.29) corresponds to simply re-normalizing the weights

𝑦(𝑡+1) to obtain a probability distribution. Therefore, the MWU algorithm is exactly the

online mirror descent with the unnormalized entropy mirror map.

We first show that the MWU algorithm as stated in Algorithm 9 converges for minimizing

convex functions when the counting oracle 𝑀𝜖 is exact (i.e. 𝜖 = 0) by simply using the

analysis for the mirror descent algorithm (see Theorem 6), and the equivalence with the

entropic case.

Theorem 17. Consider MWU for minimizing a 𝐺ℎ-Lipschitz convex function ℎ(·) over

𝑃 , as stated in Algorithm 9. Let 𝜔(𝑥) =
∑︀

𝑖(𝑥𝑖 ln𝑥𝑖 − 𝑥𝑖), 𝜁 = max𝑢∈𝒰 ‖𝑢‖1, 𝑅2 =

max𝑝∈Δ𝒰 𝜔(𝑝)−min𝑝∈Δ𝒰 𝜔(𝑝) and 𝜂 = 𝑅
𝜁𝐺ℎ

√︁
2
𝑇
, then

min
1≤𝑡≤𝑇

ℎ(𝑥(𝑡))−min
𝑥∈𝑃

ℎ(𝑥) ≤ 𝜁𝐺ℎ𝑅

√︂
2

𝑇
.

Proof. By the definition and convexity of 𝑔, we have

min
1≤𝑡≤𝑇

ℎ(𝑥(𝑡))−min
𝑥∈𝑃

ℎ(𝑥) = min
1≤𝑡≤𝑇

𝑔(𝑝(𝑡))− min
𝑝∈Δ𝒰

𝑔(𝑝)

≤ 1

𝑇

𝑇∑︁
𝑡=1

𝑔(𝑝(𝑡))− min
𝑝∈Δ𝒰

𝑔(𝑝)

≤ 1

𝑇

𝑇∑︁
𝑡=1

∇𝑔(𝑝(𝑡))(𝑝(𝑡) − 𝑝*), (5.30)

where 𝑝* is a minimizer of 𝑔(·).

Note that 𝑅2 = max𝑝∈Δ𝒰 𝜔(𝑝) − min𝑝∈Δ𝒰 𝜔(𝑝) ≤ 0 − |𝒰|
∑︀

𝑢∈𝑈
1
|𝒰| ln(

1
|𝒰|) ≤ ln |𝒰|.

By the definition of 𝑔, we have (∇𝑔(𝑝))𝑢 = 𝑢𝑇∇ℎ(𝑥) for
∑︀

𝑢∈𝒰 𝑝(𝑢)𝑢 = 𝑥 ∈ 𝑃 . Thus,

‖∇𝑔(𝑝(𝑖))‖∞ = max𝑢∈𝒰 𝑢𝑇∇ℎ(𝑥(𝑖)) ≤ 𝜁𝐺ℎ = 𝐺𝑔 (say). We claim that Algorithm 9 is simply

the entropic mirror descent for minimizing 𝑔(·) over 𝑝 ∈ Δ𝒰 . We are maintaining a proba-

bility distribution 𝑝(𝑡) over the vertex set 𝒰 with the help of multipliers 𝜆(𝑡) in each round 𝑡.

We start with a uniform probability distribution 𝑝(1), by setting the multipliers 𝜆(1)(𝑒) = 1

for all 𝑒 ∈ 𝐸. The losses 𝑙(𝑡) in each round are ∇𝑔(𝑝). Thus, updating the multipliers 𝜆(𝑡+1)

by 𝜆(𝑡)(𝑒) exp(−𝜂𝑙(𝑡)(𝑒)) (𝑒 ∈ 𝐸) implicitly updates the probability distribution to weights

121

proportional to 𝑝(𝑡+1). The counting oracle 𝑀𝜖 helps compute the normalized probability

distribution 𝑝(𝑡+1) as well as the gradient corresponding to this distribution. Using Theorem

6 (from Chapter 2) and (5.30), we get the statement of the theorem:

min
1≤𝑡≤𝑇

ℎ(𝑥(𝑡))−min
𝑥∈𝑃

ℎ(𝑥) ≤ 1

𝑇

𝑇∑︁
𝑡=1

∇𝑔(𝑝(𝑡))(𝑝(𝑡) − 𝑝*) ≤ 𝑅𝐺𝑔

√︀
2/𝑇 = 𝜁𝐺ℎ

√︂
2 ln |𝒰|

𝑇
.

Note that the generalized counting oracle 𝑀𝜖 might be approximate, and this introduces

some errors in the computation. The case of 𝑀𝜖 with 𝜖 > 0 can be analyzed by invoking

results about approximate projections in the mirror descent algorithm, however we do not

reproduce those results here. One can also show better bounds on the rate of convergence

of entropic mirror descent by considering the effect of the change of space from 𝑃 to 𝑃𝑢 on

the convexity constants of ℎ(·), which in turn affect the rate of convergence of the entropic

mirror descent. We next show that if a function is 𝛽-smooth over 𝑃 , then it is still smooth

over Δ𝑢, and this can be exploited to obtain a faster rate of convergence.

Lemma 5.3. Consider a convex function ℎ : 𝑃 → R that is 𝛽-smooth with respect to the

‖ · ‖1 norm, and the corresponding function 𝑔 : Δ𝒰 → R such that 𝑔(𝑝) = ℎ(𝑥) when∑︀
𝑢∈𝒰 𝑝(𝑢)𝑢 = 𝑥. Let 𝜁 = max𝑢∈𝒰 ‖𝑢‖1. Then, 𝑔 is 𝜁2𝛽-smooth w.r.t. ‖ · ‖1.

Proof. ℎ being 𝛽-smooth w.r.t. ‖ · ‖1 means ‖∇ℎ(𝑥) − ∇ℎ(𝑦)‖∞ ≤ 𝛽‖𝑥 − 𝑦‖1. Let the

probability distributions 𝑝 and 𝑞 correspond to the points 𝑥 and 𝑦 ∈ 𝑃 respectively. Then,

‖∇𝑔(𝑝)−∇𝑔(𝑞)‖∞ = ‖
(︀
𝑢𝑇 (∇ℎ(𝑥)−∇ℎ(𝑦))

)︀
𝑢
‖∞

= max
𝑢∈𝒰

𝑢𝑇 (∇ℎ(𝑥)−∇ℎ(𝑦))

≤ ‖∇ℎ(𝑥)−∇ℎ(𝑦)‖∞ max
𝑢∈𝒰
‖𝑢‖1

≤ 𝜁𝛽‖𝑥− 𝑦‖1

= 𝜁𝛽
∑︁
𝑒∈𝐸

|
∑︁
𝑢:𝑒∈𝑢

𝑝(𝑢)−
∑︁
𝑢:𝑒∈𝑢

𝑞(𝑢)|

≤ 𝜁𝛽
∑︁
𝑒∈𝐸

∑︁
𝑢:𝑒∈𝑢

|𝑝(𝑢)− 𝑞(𝑢)|

122

≤ 𝜁2𝛽
∑︁
𝑢∈𝒰

|𝑝(𝑢)− 𝑞(𝑢)| = 𝜁2𝛽‖𝑝− 𝑞‖1.

Hence, 𝑔 is 𝜁2𝛽-smooth w.r.t. ‖ · ‖1.

Using Lemma 5.3 and Theorem 3 (from Chapter 2), we now state the convergence rate

of the MWU algorithm for 𝛽-smooth functions.

Lemma 5.4. Consider MWU for minimizing a convex function ℎ(·) over 𝑃 , as stated in

Algorithm 9. Let ℎ(·) be 𝛽-smooth over 𝑃 under the 𝐿1 norm. Let 𝜔(𝑥) =
∑︀

𝑖(𝑥𝑖 ln𝑥𝑖 − 𝑥𝑖),

𝜁 = max𝑢∈𝒰 ‖𝑢‖1, 𝑅2 = max𝑝∈Δ𝒰 𝜔(𝑝)−min𝑝∈Δ𝒰 𝜔(𝑝) and 𝜂 = 1
𝜁2𝛽

, then

min
1≤𝑡≤𝑇

ℎ(𝑥(𝑡))−min
𝑥∈𝑃

ℎ(𝑥) ≤ 𝜁2𝛽𝑅2

𝑇
≤ 𝜁2𝛽 ln |𝒰|

𝑇
.

Strong convexity We note that strong-convexity is not preserved when we move to the

simplex of vertices. To illustrate this, consider two probability distributions 𝑝 and 𝑞 that

correspond to the same marginal point 𝑥, i.e.
∑︀

𝑢 𝑝(𝑢)𝑢 = 𝑥 =
∑︀

𝑢 𝑞(𝑢)𝑢. Then, the convex

function 𝑔 has the same value on all points connecting the line segment joining 𝑝 and 𝑞, and

therefore, 𝑔(·) is no longer strongly-convex even though ℎ(·) might be.

Interestingly, as a by-product of the MWU algorithm over the simplex of vertices, we

implicitly obtain a decomposition of the approximate minimizer of ℎ(·) as a product distri-

bution. This also gives a process to obtain a decomposition of any point 𝑥 ∈ 𝑃 over the

vertices 𝒰 , as we state in the next corollary.

Corollary 4. Consider an arbitrary vector 𝑥* ∈ 𝑃 , and let us use the MWU algorithm

for minimizing ℎ(𝑧) := (𝑧 − 𝑥*)2 over the vertex set 𝒰 , with an exact marginal oracle 𝑀0.

Let 𝜁 = max𝑢∈𝒰 ‖𝑢‖1. After 𝑂(𝜁2 ln |𝒰|/𝜖2) iterations, the MWU algorithm returns an

approximate minimizer 𝑥̃ such that ‖𝑥̃ − 𝑥*‖22 ≤ 𝜖 (or ‖𝑥̃ − 𝑥*‖∞ ≤ 𝑂(
√
𝜖)). Moreover,

the multipliers 𝜆̃ corresponding to 𝑥̃ satisfy 𝑀0(𝜆̃) = 𝑥̃, thus resulting in an approximate

decomposition of 𝑥* into a product distribution.

Proof. Let 𝜁 = max𝑢∈𝒰 ‖𝑢‖1. We know that for the simplex of vertices, 𝑅2 ≤ ln |𝒰|. Using

Theorem 17, after 𝑂(𝜁2 ln |𝒰|/𝜖2) iterations, the MWU algorithm returns 𝑥̃ such that ℎ(𝑥̃)−

ℎ(𝑥*) ≤ 𝑂(𝜖), which in turn implies ‖𝑥̃− 𝑥*‖22 ≤ 𝑂(𝜖).

123

Comparison with related work To the best of our knowledge, it was not observed before

that it might make sense to do convex optimization over 0/1 combinatorial polytopes using

the MWU algorithm over the simplex of its vertices (which lies in a much larger dimension).

What we point out in this chapter is that the MWU algorithm can be efficiently simulated

in this large space as well, with the help of product distributions and approximate counting

oracles. In Chapter 3, we considered the minimization of separable convex functions over

submodular polytopes. We know that any 𝑁 -dimensional simplex is submodular, and we

showed that Card-Fix can be used to compute entropic projections over simplices in time

𝑂(𝑁 log𝑁). In the case of Δ𝒰 however, those results are not meaningful as |𝒰| is exponential

in the input size of the problem. (One could still perform online mirror descent over the

space of marginals, i.e. 𝑃 , and use generalized projections over 𝑃). Further, note that the

results of Chapter 3 apply to submodular polytopes only, however, in the current chapter

we impose no such restriction.

124

Chapter 6

Nash-Equilibria in Two-player Games

“Nobody gets to live life backward. Look ahead, that is where your future lies.”
- Ann Landers.

We have so far studied the minimization of separable convex functions over submodular

polytopes, motivated by bottlenecks in projection-based first-order optimization methods

in Chapter 3; parametric line searches in extended submodular polytopes, motivated by

bottlenecks in Inc-Fix and variants of the Frank-Wolfe method in Chapter 4; as well as

approximate counting oracles over the vertex set of 0/1 combinatorial polytopes to do online

linear optimization over their vertex set and convex minimization in Chapter 5. In this

chapter, we now view these results under the unified lens of computing optimal strategies

(i.e. Nash-equilibria) for two-player games and compare their applicability and limitations.

We also study the structure of Nash-equilibria for certain matroid games, without using any

results from the previous chapters.

We consider here two-player zero-sum combinatorial games where both players play com-

binatorial objects, such as spanning trees, cuts, matchings, or paths in a given graph. The

number of pure strategies of both players can then be exponential in a natural description

of the problem.1 For example, in a spanning tree game in which all the results of this thesis

apply, pure strategies correspond to spanning trees 𝑇1 and 𝑇2 selected by the two players in

a graph 𝐺 (or two distinct graphs 𝐺1 and 𝐺2) and the payoff
∑︀

𝑒∈𝑇1,𝑓∈𝑇2
𝐿𝑒𝑓 is a bilinear

1These are the succinct games, as discussed in the paper of Papadimitriou and Roughgarden on correlated
equilibria [Papadimitriou and Roughgarden, 2008].

125

function. This allows for example to model classic network interdiction games (see for e.g.,

[Washburn and Wood, 1995]), design problems [Chakrabarty et al., 2006], and the inter-

action between algorithms for many problems such as ranking and compression as bilinear

duels [Immorlica et al., 2011]. To formalize the games we are considering, assume that the

pure strategies for player 1 (resp. player 2) correspond to the vertices 𝑢 (resp. 𝑣) of a strategy

polytope 𝑃 ⊆ R𝑚 (resp. 𝑄 ⊆ R𝑛) and that the loss for player 1 is given by the bilinear

function 𝑢𝑇𝐿𝑣 where 𝐿 ∈ R𝑚×𝑛. A feature of bilinear loss functions is that the bilinearity

extends to mixed strategies as well, and thus one can easily see that mixed Nash-equilibria

correspond to solving the min-max problem:

min
𝑥∈𝑃

max
𝑦∈𝑄

𝑥𝑇𝐿𝑦 = max
𝑦∈𝑄

min
𝑥∈𝑃

𝑥𝑇𝐿𝑦. (6.1)

Nash-equilibria for two-player zero-sum games can be found by solving a linear program

[von Neumann, 1928]. However, for succinct games in which the strategies of both players

are exponential in a natural description of the game, the corresponding linear program

has exponentially many variables and constraints, and as [Papadimitriou and Roughgarden,

2008] point out in their open questions section, “there are no standard techniques for linear

programs that have both dimensions exponential.” Under bilinear losses/payoffs however,

the von Neumann linear program can be reformulated in terms of the strategy polytopes 𝑃

and 𝑄, and this reformulation can be solved using the equivalence between optimization and

separation and the ellipsoid algorithm ([Grötschel et al., 1981], see also Section 6.1).

In this chapter, we first explore ways of solving efficiently the von Neumann linear pro-

gram using online learning algorithms. It is well-known that if one of the players uses a

(Hannan-consistent2) online learning algorithm and adapts his/her strategies according to

the losses incurred so far (with respect to the most adversarial opponent strategy) then the

average of the strategies played by the players in the process constitutes an approximate

equilibrium ([Cesa-Bianchi and Lugosi, 2006], see also Lemma 6.2). The setting for online

learning that we consider here is: in each round one of the players (i.e. the learner) chooses

a mixed strategy 𝑥(𝑡) ∈ 𝑃 ; the second player (who acts as an adversary) then chooses a

2An online learning algorithm is called Hannan-consistent if its average regret vanishes as the number of
time steps goes to infinity.

126

loss vector 𝑙(𝑡) = 𝐿𝑣(𝑡) where 𝑣(𝑡) ∈ 𝑄 and the loss incurred by the player is 𝑥(𝑡)𝑇 𝑙(𝑡). For

simplicity we assume that the learner observes the full loss vector 𝑙(𝑡). The goal of the learner

is to minimize the regret, 𝑅𝑡 =
∑︀𝑡

𝑖=1 𝑥
(𝑡)𝑇 𝑙(𝑡) − min𝑥∈𝑃 𝑥𝑇 𝑙(𝑡). If the learner uses an algo-

rithm such that lim𝑡→∞
𝑅𝑡

𝑡
= 0, then the average of the strategies played by the two players

is an approximate equilibrium. In Section 6.2, we specifically compare the performance of

two online learning algorithms over 𝑃 : online mirror descent (using Inc-Fix for computing

projections from Chapter 3) and the multiplicative weights update (using generalized ap-

proximate counting oracles, from Chapter 5) in the context of converging to approximate

equilibria. In both cases, we assume that we have an (approximate) linear optimization

oracle for 𝑄, which allows to compute the (approximately) worst loss vector given a mixed

strategy in 𝑃 .

In Section 6.3, we combinatorially characterize the structure of symmetric Nash-equilibria

(i.e. same mixed strategy is played by both the players) in a two-player game when both

the players play bases of the same matroid. We give necessary and sufficient conditions for

the existence of symmetric Nash-equilibria and show that they can be efficiently computed

using any separable convex minimization algorithm (for e.g. using algorithm Inc-Fix from

Chapter 3), without using learning.

6.1 Using the ellipsoid algorithm

In this section, we review the von Neumann linear program for a combinatorial game with

strategy polytopes 𝑃 ⊆ R𝑛 and 𝑄 ⊆ R𝑚 and a bilinear loss function. We show that this

linear program has a polynomial (in 𝑛 and 𝑚) vertex complexity, which in turn implies that

we can use the machinery of the ellipsoid algorithm to find Nash-equilibria in polynomial

time.

In a two-player zero-sum game with loss (or payoff) matrix 𝑅 ∈ R𝑀×𝑁 , a mixed strategy

𝑥 (resp. 𝑦) for the row player (resp. column player) trying to minimize (resp. maximize)

his/her loss is an assignment 𝑥 ∈ Δ𝑀 (resp. 𝑦 ∈ Δ𝑁) where Δ𝐾 is the simplex {𝑥 ∈

R𝐾 ,
∑︀𝐾

𝑖=1 𝑥𝑖 = 1, 𝑥 ≥ 0}. A pair of mixed strategies (𝑥*, 𝑦*) is called a Nash-equilibrium

if 𝑥*𝑇𝑅𝑦 ≤ 𝑥*𝑇𝑅𝑦* ≤ 𝑥̄𝑇𝑅𝑦* for all 𝑥̄ ∈ Δ𝑀 , 𝑦 ∈ Δ𝑁 , i.e. there is no incentive for either

127

player to switch from (𝑥*, 𝑦*) given that the other player does not deviate. Similarly, a pair

of strategies (𝑥*, 𝑦*) is called an 𝜖−approximate Nash-equilibrium if 𝑥*𝑇𝑅𝑦 − 𝜖 ≤ 𝑥*𝑇𝑅𝑦* ≤

𝑥̄𝑇𝑅𝑦* + 𝜖 for all 𝑥̄ ∈ Δ𝑀 , 𝑦 ∈ Δ𝑁 . Von Neumann showed that every two-player zero-sum

game has a mixed Nash-equilibrium that can be found by solving the following dual pair of

linear programs:

(𝐿𝑃1) :min𝜆 (𝐿𝑃2) :max𝜇

𝑅𝑇𝑥 ≤ 𝜆𝑒, 𝑅𝑦 ≥ 𝜇𝑒,

𝑒𝑇𝑥 = 1, 𝑥 ≥ 0. 𝑒𝑇𝑦 = 1, 𝑦 ≥ 0.

where 𝑒 is a vector of all ones in the appropriate dimension.

In our two-player zero-sum combinatorial games, we let the strategies of the row player

be 𝒰 = vert(𝑃), where 𝑃 = {𝑥 ∈ R𝑚, 𝐴𝑥 ≤ 𝑏} is a polytope and vert(𝑃) is the set of vertices

of 𝑃 and those of the column player be 𝒱 = vert(𝑄) where 𝑄 = {𝑦 ∈ R𝑛, 𝐶𝑦 ≤ 𝑑} is also a

polytope. The numbers of pure strategies, 𝑀 = |𝒰|, 𝑁 = |𝒱| will typically be exponential

in 𝑚 or 𝑛, and so may be the number of rows in the constraint matrices A and C. The linear

programs (𝐿𝑃1) and (𝐿𝑃2) have thus exponentially many variables and constraints. We

restrict our attention to bilinear loss functions that are represented as 𝑅𝑢𝑣 = 𝑢𝑇𝐿𝑣 for some

𝑚× 𝑛 matrix 𝐿.

An artifact of bilinear loss functions is that the bilinearity extends to mixed strategies

as well. If 𝜆 ∈ Δ𝒰 and 𝜃 ∈ Δ𝒱 are mixed strategies for the players then the expected loss is

equal to 𝑥𝑇𝐿𝑦 where 𝑥 =
∑︀

𝑢∈𝒰 𝜆𝑢𝑢 and 𝑦 =
∑︀

𝑣∈𝒱 𝜃𝑣𝑣:

E𝑢,𝑣(𝑅𝑢𝑣) =
∑︁
𝑢∈𝒰

∑︁
𝑣∈𝒱

𝜆𝑢𝜃𝑣(𝑢
𝑇𝐿𝑣) = (

∑︁
𝑢∈𝒰

𝜆𝑢𝑢)𝐿(
∑︁
𝑣∈𝒱

𝜃𝑣𝑣) = 𝑥𝑇𝐿𝑦.

Thus, the loss incurred by mixed strategies only depend on the marginals of the distribu-

tions over the vertices of 𝑃 and 𝑄; distributions with the same marginals give the same

expected loss. Therefore, the Nash-equilibrium problem for these games reduces to (6.1):

min𝑥∈𝑃 max𝑦∈𝑄 𝑥𝑇𝐿𝑦 = max𝑦∈𝑄 min𝑥∈𝑃 𝑥𝑇𝐿𝑦.

As an example of such a combinatorial game, consider a spanning tree game where the

128

pure strategies of each player are the spanning trees of a given graph 𝐺 = (𝑉,𝐸) with

𝑚 edges, and 𝐿 is the 𝑚 × 𝑚 identity matrix. This corresponds to the game in which

the row player would try to minimize the intersection of his/her spanning tree with that

of the column player, whereas the column player would try to maximize the intersection.

For a complete graph on 𝑛 vertices, the number of pure strategies for each player is 𝑛𝑛−2

by Cayley’s theorem. For the graph 𝐺 in Figure 6-1(a), the marginals of the unique3

Nash-equilibrium for both players are given in 6-1(b) and (c), i.e. for the row player

𝑝* : 𝑝*(𝑒) =

⎧⎪⎨⎪⎩13/36 𝑒 ∈ 𝐸(1, 2, 3, 4, 5) ∖ (1, 3)

3/4 𝑒 ∈ 𝐸(1, 6, 7, 8, 3)

, and for the column player 𝑞* : 𝑞*(𝑒) =

⎧⎪⎨⎪⎩1/3 𝑒 ∈ 𝐸(1, 2, 3, 4, 5)

11/12 𝑒 ∈ 𝐸(1, 6, 7, 8, 3) ∖ (1, 3)
. The value of the game is 𝑝*𝑇 𝑞* = 4.0833, this is also the

cost of the minimum spanning tree under weights 𝑞*, and the cost of the maximum spanning

tree under weights 𝑝*. We include more examples in Appendix B.

Figure 6-1: (a) 𝐺 = (𝑉,𝐸), (b) Optimal strategy for the row player minimizing the weight of the
intersection of the two strategies, (c) Optimal strategy for the column player maximizing the weight
of the intersection.

For combinatorial games with bilinear losses, the linear programs (𝐿𝑃1) and (𝐿𝑃2) can

be reformulated over the space of marginals, and (𝐿𝑃1) becomes

(𝐿𝑃1′) :min𝜆

𝑥𝑇𝐿𝑣 ≤ 𝜆 ∀ 𝑣 ∈ 𝒱 , (6.2)

𝑥 ∈ 𝑃 ⊆ R𝑚, (6.3)

3We can show computationally that this Nash-equilibrium is unique.

129

and similarly for (𝐿𝑃2): max{𝜇 : 𝑢𝑇𝐿𝑦 ≥ 𝜇 ∀𝑢 ∈ 𝒰 , 𝑦 ∈ 𝑄}. This reformulation can be

used to show that there exists a Nash-equilibrium with small (polynomial) encoding length.

A polyhedron 𝐾 is said to have vertex-complexity at most 𝜈 if there exist finite sets 𝑉,𝐸

of rational vectors such that 𝐾 = conv(𝑉) + cone(𝐸) and such that each of the vectors in

𝑉 and 𝐸 has encoding length at most 𝜈. A polyhedron 𝐾 is said to have facet-complexity

at most 𝜑 if there exists a system of inequalities with rational coefficients that has solution

set 𝐾 such that the (binary) encoding length of each inequality of the system is at most 𝜑.

Let 𝜈𝑃 and 𝜈𝑄 be the vertex complexities of polytopes 𝑃 and 𝑄 respectively; if 𝑃 and 𝑄

are 0/1 polytopes, we have 𝜈𝑃 ≤ 𝑚 and 𝜈𝑄 ≤ 𝑛. This means that the facet complexity of

𝑃 and 𝑄 are 𝑂(𝑚2𝜈𝑃) and 𝑂(𝑛2𝜈𝑄) (see Lemma (6.2.4) in [Lovász et al., 1988]). Therefore

the facet complexity of the polyhedron in (𝐿𝑃1′) can be seen to be 𝑂(max(𝑚⟨𝐿⟩𝜈𝑄, 𝑛2𝜈𝑃)),

where ⟨𝐿⟩ is the binary encoding length of 𝐿 and the first term in the max corresponds to

the inequalities (6.2) and the second to (6.3). From this, we can derive Lemma 6.1.

Lemma 6.1. The vertex complexity of the linear program (𝐿𝑃1′) is 𝑂(𝑚2(𝑚⟨𝐿⟩𝜈𝑄+𝑛2𝜈𝑃))

where 𝜈𝑃 and 𝜈𝑄 are the vertex complexities of 𝑃 and 𝑄 and ⟨𝐿⟩ is the binary encoding

length of 𝐿. (If 𝑃 and 𝑄 are 0/1 polytopes then 𝜈𝑃 ≤ 𝑚 and 𝜈𝑄 ≤ 𝑛.)

This means that our polytope defining (𝐿𝑃1′) is well-described (à la Grötschel et al.).

We can thus use the machinery of the ellipsoid algorithm [Grötschel et al., 1981] to find a

Nash-equilibrium in polynomial time for these combinatorial games, provided we can opti-

mize (or separate) over 𝑃 and 𝑄. Indeed, by the ellipsoid algorithm, we have the equivalence

between strong separation and strong optimization for well-described polyhedra. The strong

separation over (6.2) reduces to strong optimization over 𝑄, while a strong separation al-

gorithm over (6.3), i.e. over 𝑃 , can be obtained from a strong separation over 𝑃 by the

ellipsoid algorithm.

We should also point out at this point that, if the polyhedra 𝑃 and 𝑄 admit a compact

extended formulation then (𝐿𝑃1′) can also be reformulated in a compact way (and solved

using interior point methods, for example). A compact extended formulation for a polyhe-

dron 𝑃 ⊆ R𝑑 is a polytope with polynomially many (in 𝑑) facets in a higher dimensional

space that projects onto 𝑃 . This allows to give a compact extended formulation for (𝐿𝑃1′)

130

for the spanning tree game as a compact formulation is known for the spanning tree poly-

tope [Martin, 1991] (and any other game where the two strategy polytopes can be described

using polynomial number of inequalities). However, this would not work for a correspond-

ing matching game since the extension complexity for the matching polytope is exponential

[Rothvoß, 2014].

6.2 Bregman projections v/s approximate counting

As we mentioned in the introduction of this chapter, online learning algorithms can be used

to find Nash-equilibria by simulating an iterative learning process, where one player acts as

a learner and the other acts as an adversary to generate appropriate losses in each round4.

The average strategy of the two players converges to approximate Nash-equilibria. We refer

the reader to a survey by Arora, Hazan and Kale [Arora et al., 2012] for more details, and

state a lemma (with a short proof) relating the regret of learning algorithms to the guarantee

obtained in terms of approximate Nash-equilibria.

Lemma 6.2. Consider a combinatorial game with strategy polytopes 𝑃 ⊆ R𝑚 and 𝑄 ⊆ R𝑛,

and let the loss function for the row player be given by 𝑙𝑜𝑠𝑠(𝑥, 𝑦) = 𝑥𝑇𝐿𝑦 for 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑄.

Suppose we simulate an online algorithm A such that in each round 𝑡 the row player chooses

decisions from 𝑥(𝑡) ∈ 𝑃 , the column player reveals an adversarial loss vector 𝑣(𝑡) such that

𝑥(𝑡)𝑇𝐿𝑣(𝑡) ≥ max𝑦∈𝑄 𝑥(𝑡)𝑇𝐿𝑦 − 𝛿 and the row player subsequently incurs loss 𝑥(𝑡)𝑇𝐿𝑣(𝑡) for

round 𝑡. If the regret of the learner after 𝑇 rounds goes down as 𝑓(𝑇), that is,

𝑅𝑇 (𝐴) =
𝑇∑︁
𝑖=1

𝑥(𝑖)𝑇𝐿𝑣(𝑖) −min
𝑥∈𝑃

𝑡∑︁
𝑖=1

𝑥𝑇𝐿𝑣(𝑖) ≤ 𝑓(𝑇) (6.4)

then (1
𝑇

∑︀𝑇
𝑖=1 𝑥

(𝑖), 1
𝑇

∑︀𝑇
𝑖=1 𝑣

(𝑖)) is an 𝑂(𝑓(𝑇)
𝑇

+ 𝛿)-approximate Nash-equilibrium for the game.

Proof. Let 𝑥̄ = 1
𝑇

∑︀𝑇
𝑖=1 𝑥

(𝑖) and 𝑣 = 1
𝑇

∑︀𝑇
𝑖=1 𝑣

(𝑖). By the von Neumann minimax theorem, we

4Another way to converge to approximate equilibria by letting both the players act as learners and observe
the losses due to each other strategies in each round. The average of the strategies in this case also converges
to approximate Nash equilibria.

131

know that the value of the game is 𝜆* = min𝑥max𝑦 𝑥
𝑇𝐿𝑦 = max𝑦 min𝑥 𝑥

𝑇𝐿𝑦. This gives,

min
𝑥

max
𝑦

𝑥𝑇𝐿𝑦 = 𝜆* ≤ max
𝑦

𝑥̄𝑇𝐿𝑦 = max
𝑦

1

𝑇

𝑇∑︁
𝑖=1

𝑥(𝑖)𝐿𝑦 ≤ 1

𝑇

𝑇∑︁
𝑖=1

max
𝑦

𝑥(𝑖)𝑇𝐿𝑦 (6.5)

≤ 1

𝑇
(

𝑇∑︁
𝑖=1

𝑥(𝑖)𝑇𝐿𝑣(𝑖) + 𝛿) (6.6)

≤ min
𝑥∈𝑃

1

𝑇

𝑇∑︁
𝑖=1

𝑥𝑇𝐿𝑣(𝑖) +
𝑓(𝑇)

𝑇
+ 𝛿 (6.7)

= min
𝑥∈𝑃

𝑥𝑇𝐿
1

𝑇

𝑇∑︁
𝑖=1

𝑣(𝑖) +
𝑓(𝑇)

𝑇
+ 𝛿 = min

𝑥∈𝑃
𝑥𝑇𝐿𝑣 +

𝑓(𝑇)

𝑇
+ 𝛿

≤ max
𝑦∈𝑄

min
𝑥∈𝑃

𝑥𝑇𝐿𝑦 +
𝑓(𝑇)

𝑇
+ 𝛿 = 𝜆* +

𝑓(𝑇)

𝑇
+ 𝛿.

where the last inequality in (6.5) follows from the convexity max𝑦 𝑥
𝑇𝐿𝑦 in 𝑥, (6.6) follows

from the error in the adversarial loss vector, and (6.7) follows from the given regret equation

(6.4). Thus, we get 𝑥̄𝑇𝐿𝑣 ≤ max𝑦∈𝑄 𝑥̄𝑇𝐿𝑦 ≤ 𝜆* + 𝑓(𝑇)
𝑇

+ 𝛿, and 𝑥̄𝑇𝐿𝑣 ≥ min𝑥∈𝑃 𝑥𝑇𝐿𝑣 ≥

𝜆*− 𝑓(𝑇)
𝑇
− 𝛿. Hence, (𝑥̄, 𝑣) is a

(︀2𝑓(𝑇)
𝑇

+2𝛿
)︀
-approximate Nash-equilibrium for the game.

We consider here two online learning algorithms for the purposes of finding Nash-equilibria:

the online mirror descent and the multiplicative weights update method, and refer the reader

to Sections 2.2.3 and Section 5.1 for background on these respectively. The regret of the

online mirror descent scales as 𝑂(𝑅𝐺/
√
𝑇) with the choice of a 1-strongly-convex mirror

map 𝜔(·) (with respect to ‖ · ‖) such that the radius of the polytope 𝑃 with respect to 𝜔(·)

is 𝑅 and the loss functions in each round are 𝐺-Lipschitz with respect to ‖ · ‖. Therefore,

to converge to an 𝜖-approximate Nash-equilibrium (assuming the worst-case loss vectors can

be computed exactly) online mirror descent requires 𝑂(𝑅2𝐺2/𝜖2) rounds of learning, each

with the computation of a Bregman projection. On the other hand, the regret of the MWU

algorithm over a decision set 𝒰 scales as 𝑂(
√︁

ln |𝒰|
𝑇

) for losses normalized to [−1, 1]. Let

𝐹 = max𝑢∈𝑃,𝑣∈𝑄 |𝑢𝑇𝐿𝑣|. Therefore, to converge to an 𝜖-approximate Nash-equilibrium, the

MWU algorithm requires 𝑂(ln |𝒰|𝐹 2/𝜖2) rounds of learning, each with the computation

of the (even if approximate) marginal strategy corresponding to the product distribution.

The approximate marginal strategy can be used to compute the maximally adversarial loss

132

vectors. We give the complete description of the MWU for computing Nash-equilibria in

Algorithm 10. To converge to an 𝜖-approximate Nash-equilibrium, the generalized approxi-

mate counting oracle can have an error of at most 𝜖/𝐹 ′ for 𝐹 ′ = max𝑣∈𝑄 ‖𝐿𝑣‖1, as we show

in the following lemma:

Algorithm 10: The MWU algorithm for computing Nash-equilibria
input : M𝜖1 : R𝑚 → R𝑚, 𝐿 ∈ R𝑛×𝑚, 𝜖 > 0.
output: 𝑂(𝜖+ 𝐹𝜖1)-approximate Nash equilibrium (𝑥̄, 𝑦)
𝜆(1) = 1, 𝑡 = 1, 𝐹 = max𝑥∈𝑃,𝑦∈𝑄 𝑥𝑇𝐿𝑦, 𝜂 =

√︀
ln |𝒰|/𝑇 ;

repeat
𝑥̃(𝑡) = M𝜖1(𝜆

(𝑡));
𝑣(𝑡) ∈ argmax𝑦∈𝑄 𝑥̃(𝑡)𝐿𝑦;
𝜆(𝑡+1)(𝑒) = 𝜆(𝑡)(𝑒) * exp(−𝜂𝐿𝑣(𝑡)(𝑒)/𝐹) ∀𝑒 ∈ 𝐸;
𝑡← 𝑡+ 1

until 𝑡 < 𝐹 2 ln |𝑈 |
𝜖2 ;

(𝑥̄, 𝑦) = (1
𝑡−1

∑︀𝑡−1
𝑖=1 𝑥̃

(𝑖), 1
𝑡−1

∑︀𝑡−1
𝑖=1 𝑣

(𝑖))

Lemma 6.3. Given a generalized approximate counting oracle M𝜖1 that computes a marginal

vector 𝑥̃ corresponding to multipliers 𝜆 with error ||𝑀0(𝜆) − 𝑥̃||∞ ≤ 𝜖1, a linear opti-

mization oracle to compute the maximally adversarial strategy 𝑣(𝑖) ∈ argmax𝑣∈𝑄 𝑥𝑇𝐿𝑣,

𝐹 = max𝑢∈𝑃,𝑣∈𝑄 |𝑢𝑇𝐿𝑣|, 𝐹 ′ = max𝑣∈𝑄 ‖𝐿𝑣‖1, the MWU algorithm gives an 𝑂(𝜖 + 𝐹 ′𝜖1)-

approximate Nash-equilibrium (1
𝑡

∑︀𝑡
𝑖=1 𝑥̃

(𝑖), 1
𝑡

∑︀𝑡
𝑖=1 𝑣

(𝑖)) in 𝑂(𝐹
2 ln(|𝒰|)
𝜖2

) rounds and time poly-

nomial in (𝑛,𝑚).

Proof. Let the multipliers in each round 𝑡 be 𝜆(𝑡), the corresponding true and approximate

marginal points in round 𝑡 be 𝑥(𝑡) and 𝑥̃(𝑡) respectively, such that ||𝑥(𝑡) − 𝑥̃(𝑡)||∞ ≤ 𝜖1. Using

the linear optimization oracle, we can compute adversarial loss vectors, 𝑣(𝑡) in each round

such that 𝑣(𝑡) ∈ argmax𝑦∈𝑄 𝑥̃(𝑡)𝐿𝑦.

Even though we cannot compute 𝑥(𝑡) exactly, we do maintain the corresponding 𝜆(𝑡)s that

correspond to these true marginals. Let us analyze first the MWU algorithm corresponding

to the loss vectors 𝑣(𝑡) using product distributions (that can be done efficiently) corresponding

to the true marginal points. Using Corollary 2, we get the following regret bound with respect

to the true marginals corresponding to 𝑡 = 𝐹 2 ln(|𝒰|)
𝜖2

rounds:

1

𝑡

𝑡∑︁
𝑖=1

𝑥(𝑖)𝑇𝐿𝑣(𝑖) ≤ 1

𝑡

𝑡∑︁
𝑖=1

x𝑇𝐿𝑣(𝑖) +𝑂(𝜖) (6.8)

133

We do not have the value for 𝑥(𝑖) for 𝑖 = 1, . . . , 𝑡, but only estimates 𝑥̃(𝑖) for 𝑖 = 1, . . . , 𝑡

such that ||𝑥̃(𝑖) − 𝑥(𝑖)||∞ ≤ 𝜖1. Since the losses we consider are bilinear, we can bound the

loss of the estimated point in each iteration 𝑖 as follows:

|𝑥̃(𝑖)𝑇𝐿𝑣(𝑖) − 𝑥(𝑖)𝑇𝐿𝑣(𝑖)| ≤ ‖𝑥̃(𝑖) − 𝑥(𝑖)‖∞‖𝐿𝑣(𝑖)‖1 ≤ 𝐹 ′𝜖1. (6.9)

Thus using (6.8), we get

1

𝑡

𝑡∑︁
𝑖=1

𝑥̃(𝑖)𝑇𝐿𝑣(𝑖) ≤ 1

𝑡

𝑡∑︁
𝑖=1

𝑥𝑇𝐿𝑣(𝑖) +𝑂(𝜖+ 𝐹 ′𝜖1) ∀𝑥 ∈ 𝑃. (6.10)

Now, considering that we played points 𝑥̃(𝑖) for each round 𝑖, and suffered maximally adver-

sarial losses 𝑣(𝑖), we have shown that the MWU algorithm achieves 𝑂(𝜖+𝐹 ′𝜖1) regret on an

average. Thus, using Lemma 6.2 we have that (1
𝑡

∑︀𝑡
𝑖=1 𝑥̃

(𝑖), 1
𝑡

∑︀𝑡
𝑖=1 𝑣

(𝑖)) is an 𝑂(𝜖 + 𝐹 ′𝜖1)-

approximate Nash-equilibrium.

Both the learning approaches, online mirror descent and the multiplicative weights up-

date, have different applicability and limitations. We know how to efficiently perform the

Bregman projection only for polymatroids, and not for bipartite matchings for which the

MWU algorithm with product distributions can be used. On the other hand, there exist

matroids for which any generalized approximate counting algorithm requires an exponential

number of calls to an independence oracle [Azar et al., 1994], while an independence oracle

is all what we need to make the Bregman projection efficient in the online mirror descent

approach. Further, the running time of the online mirror descent is dependent on the choice

of the mirror map, as well as the choice of the norm. Our projection algorithm, Inc-Fix can

be used to compute projections whenever the corresponding Bregman divergence is separa-

ble and one of the strategy polytopes of the game is submodular. The applicability of the

online linear optimization framework for the MWU algorithm is crucially dependent on the

existence of efficient (approximate) generalized counting oracles. 5

We next consider a combinatorial games with the strategy polytope 𝑃 ⊆ R𝑛 being the
5One can also potentially use the MWU algorithm to minimize convex functions, and use that to ap-

proximately compute Bregman projections for projection-based first-order optimization methods. However,
we do not explore this connection in this thesis.

134

spanning tree polytope (the number of edges in the underlying graph are assumed to be 𝑛,

let the number of vertices be 𝜈) and 𝑄 ⊆ R𝑚 being an arbitrary 0/1 polytope such that

there exists a linear optimization oracle over 𝑄. Consider a general loss matrix 𝐿 ∈ R𝑛×𝑚

with ‖𝐿‖∞ ≤ 1 (i.e. each entry of 𝐿 is in [−1, 1]). We compare the running times of online

mirror descent and the MWU algorithm in different settings. Recall that the online mirror

descent algorithm starts with 𝑥(0) being the 𝜔−center of the combinatorial polytope, that

can be obtained by projecting a vector of ones.

(i) Entropic mirror descent over 𝑃 : The radius of the spanning tree polytope (we con-

sider the one characterized by Edmonds) is 𝑅2 = max𝑥∈𝑃 𝜔(𝑥) − min𝑥∈𝑃 𝜔(𝑥), for

𝜔(𝑥) =
∑︀

𝑒(𝑥𝑒 ln𝑥𝑒 − 𝑥𝑒). Note that since 𝜔(·) is a convex function, the maximum

of 𝜔(·) is obtained at the vertices. However, the vertices are 0/1 vectors, there-

fore max𝑥∈𝑃 𝜔(𝑥) = −(𝜈 − 1). The minimum entropy point in the spanning tree

polytope should be as uniform as possible. We can lower bound the entropy of

any 𝑥 ∈ 𝑃 by the entropy of 𝜈−1
𝑛
1 (vector obtained by raising each edge of the

graph to (𝜈 − 1)/𝑛 such that the rank constraint on the ground set is satisfied):

min𝑥∈𝑃 𝜔(𝑥) ≥ 𝑛 (𝜈−1)
𝑛

ln(𝜈−1
𝑛
) − (𝜈 − 1). Therefore, 𝑅2 ≤ 𝜈 ln 𝜈. Next, we need to

bound the gradient of the loss functions in the dual norm, i.e. 𝐺 = ‖𝐿𝑣‖∞ for all

𝑣 ∈ 𝑄. Since ‖𝐿‖∞ ≤ 1, we can bound 𝐺 ≤ max𝑣∈𝑄 ‖𝑣‖1 = 𝐹 (say). The en-

tropic mirror descent algorithm requires 𝑂(𝑅2𝐺2/𝜖2) rounds of learning to converge

to 𝜖-approximate Nash-equilibria. Each round requires the computation of a Bregman

projection. For the spanning tree polytopes, one can use 𝑂(𝜈) maximum flow com-

putations (using Corollary 51.3a. from [Schrijver, 2003] and references therein) for

finding the most violated submodular constraint (i.e. submodular function minimiza-

tion) in 𝑂(𝑛2𝜈) time (using Orlin’s 𝑂(𝑛𝜈) algorithm for computing the maximum flows

[Orlin, 2013]). In each projection, the Inc-Fix requires 𝑂(𝜈) minimizations (instead

of 𝑂(𝑛) submodular function minimizations) as the chain of tight sets can only be

𝑂(𝜈) long. Therefore, for each projection the worst-case running time of Inc-Fix is

𝑂(𝑛2𝜈2). Thus, the overall running time of the entropic mirror descent algorithm is

𝑂(𝑛2𝜈3𝐹 2 ln(𝜈)/𝜖2).

135

(ii) Gradient descent over 𝑃 (i.e. mirror descent with the squared 𝐿2 norm and the Eu-

clidean mirror map): Under the squared Euclidean distance, 𝑅2 = max𝑥∈𝑃
1
2
‖𝑥‖22 −

min𝑥∈𝑃
1
2
‖𝑥‖2 ≤ 1

2
(𝜈 − 1) as the maximum of the convex function is attained at a

vertex. Using the squared Euclidean distance (as opposed to the entropic mirror map)

even though we reduce the radius 𝑅2, the Lipschitz constant might be greater with

respect to the 𝐿2-norm (as opposed to the 𝐿1-norm). In this example, the loss func-

tions are such that 𝐺 = ‖∇𝑙(𝑖)‖2 = ‖𝐿𝑣(𝑖)‖2 ≤ 𝐹
√
𝑛 and therefore, the online mirror

descent algorithm converges to an 𝜖-approximate strategy in 𝑂(𝜈𝐹 2𝑛/𝜖2) rounds of

learning. Overall running time is 𝑂(𝑛3𝜈3𝐹 2/𝜖2) by accounting for the time to compute

projections over the spanning tree polytope.

(iii) Multiplicative weights update over Δ𝒰 . In this case, we know that the radius 𝑅2 ≤

ln |𝒰| = 𝑂(𝜈 ln 𝜈) in the case of the spanning tree polytope. Further, 𝐺ℎ = ‖𝐿𝑣(𝑖)‖∞ =

𝐹 and thus the Lipschitz constant in the space of the vertex set is 𝐺𝑔 ≤ max𝑢∈𝒰 ‖𝑢‖1𝐺ℎ =

𝑂(𝜈𝐹). To compute projections onto the Δ𝒰 , we use an approximate counting oracle

from [Koutis et al., 2010] that has worst-case running time 𝑂̃(𝑛2). Therefore, using

Theorem 17 the worst-case running time is 𝑂̃(𝑛2𝑅2𝐺2
𝑔/𝜖

2) = 𝑂̃(𝑛2𝜈3𝐹 2 ln(𝜈)/𝜖2). One

can also compute the worst-case running time to achieve an 𝑂(𝜖) approximate Nash-

equilibrium by computing the scale factor: 𝐹 = max𝑥∈𝑃,𝑦∈𝑄 𝑥𝑇𝐿𝑦 = 𝑂(𝜈𝐹), and using

the form 𝑂(𝐹 2 ln(𝒰)/𝜖2) from Lemma 6.3 which gives the same time complexity.

It is interesting to note that even though the radius of 𝑃 under the entropic mirror map

is larger than the radius under the Euclidean mirror map, the running time of the online

mirror descent under the KL-divergence is better than the running time of gradient descent

over 𝑃 due to the choice of the norm. In spite of the fact that the MWU algorithm is

operating in an exponential space with the help of product distributions, it achieves the

same running time as the entropic mirror descent on the marginal space. We would also

like to note that saddle point methods like saddle point mirror prox [Nemirovski, 2004] and

optimistic mirror descent [Rakhlin and Sridharan, 2013] can be used for computing Nash-

equilibria whenever projections and/or approximate counting can be done efficiently on both

the strategy polytopes. This results in a better dependence on 𝜖 for the running time to

136

converge to 𝜖-approximate equilibria (𝑂(1/𝜖) instead of 𝑂(1/𝜖2)), however we do not explore

these results in this thesis. There has also been some recent work in developing a variant of

the Frank-Wolfe algorithm for solving saddle-point problems [Gidel et al., 2016] that could

potentially benefit from the line searches we explored in Chapter 4.

6.3 Combinatorial Structure of Nash-Equilibria

We now characterize the combinatorial structure of Nash-equilibria in matroid games that

can be exploited to computationally find these without using learning algorithms. We

show that if certain (symmetric) Nash-equilibria exist, they coincide with the solutions of

min𝑥∈𝐵(𝑀)

∑︀
𝑒∈𝐸 𝑥2

𝑒/𝑤𝑒 for some positive weight vector 𝑤 ∈ R𝐸
>0. Since this separable convex

function can be minimized using the Inc-Fix algorithm, these results provide an alternate

approach for finding Nash-equilibria. We refer the reader to [Schrijver, 2003] and [Oxley,

2006] for background on matroids.

We assume in this section that the strategy polytopes of both the players are the same.

We study the structure of symmetric Nash-equilibria that are a set of optimal strategies such

that both players play the exact same mixed strategy at equilibrium. We first give necessary

and sufficient conditions for a symmetric Nash-equilibrium to exist in case of matroid games.

Theorem 18. Consider a two-player zero-sum combinatorial game with respect to a matroid

𝑀 = (𝐸, ℐ) with an associated rank function 𝑟 : 𝐸 → R+. Let 𝐿 be the loss matrix for the

row player such that it is symmetric, i.e. 𝐿𝑇 = 𝐿. Let 𝑥 ∈ 𝐵(𝑀) = {𝑥 ∈ RE
+ : 𝑥(𝑆) ≤

𝑟(𝑆) ∀ 𝑆 ⊆ 𝐸, 𝑥(𝐸) = 𝑟(𝐸)}. Suppose 𝑥 partitions the elements of the ground set into

{𝑃1, 𝑃2, . . . 𝑃𝑘} such that (𝐿𝑥)(𝑒) = 𝑐𝑖 ∀𝑒 ∈ 𝑃𝑖 and 𝑐1 < 𝑐2 . . . < 𝑐𝑘. Then, the following are

equivalent.

(i). (𝑥, 𝑥) is a symmetric Nash-equilibrium,

(ii). All bases of matroid 𝑀 have the same cost with respect to weights 𝐿𝑥,

(iii). For all bases 𝐵 of 𝑀 , |𝐵 ∩ 𝑃𝑖| = 𝑟(𝑃𝑖),

(iv). 𝑥(𝑃𝑖) = 𝑟(𝑃𝑖) for all 𝑖 ∈ {1, . . . , 𝑘},

137

(v). For all circuits 𝐶 of 𝑀 , ∃𝑖 : 𝐶 ⊆ 𝑃𝑖.

Proof. Case (i) ⇔ (ii). Assume first that (𝑥, 𝑥) is a symmetric Nash-equilibrium. Then,

the value of the game is max𝑧∈𝐵(𝑀) 𝑥
𝑇𝐿𝑧 = min𝑧∈𝐵(𝑀) 𝑧

𝑇𝐿𝑥 = min𝑧∈𝐵(𝑀) 𝑥
𝑇𝐿𝑇 𝑧 which is in

turn equal to min𝑧∈𝐵(𝑀) 𝑥
𝑇𝐿𝑧 as 𝐿𝑇 = 𝐿. This implies that every base of the matroid has

the same cost under the weights 𝐿𝑥.

Conversely, if every base has the same cost with respect to weights 𝐿𝑥, then 𝑥 belongs to

both argmax𝑦∈𝐵(𝑀) 𝑥
𝑇𝐿𝑦 and argmin𝑦∈𝐵(𝑀) 𝑥

𝑇𝐿𝑦. Since no player has an incentive to de-

viate, this implies that (𝑥, 𝑥) is a Nash-equilibrium.

Case (ii)⇔ (iii). Assume (ii) holds. Suppose there exists a base 𝐵 such that |𝐵∩𝑃𝑖| < 𝑟(𝑃𝑖)

for some 𝑖. We know that there exists a base 𝐵′ such that |𝐵′ ∩ 𝑃𝑖| = 𝑟(𝑃𝑖). Since

𝐵 ∩ 𝑃𝑖, 𝐵
′ ∩ 𝑃𝑖 ∈ ℐ and |𝐵′ ∩ 𝑃𝑖| > |𝐵 ∩ 𝑃𝑖|, ∃𝑒 ∈ (𝐵′ ∖ 𝐵) ∩ 𝑃𝑖 such that (𝐵 ∩ 𝑃𝑖) + 𝑒 ∈ ℐ.

Since (𝐵 ∩ 𝑃𝑖) + 𝑒 ∈ ℐ and 𝐵 is a base, ∃𝑓 ∈ 𝐵 ∖ 𝑃𝑖 such that 𝐵 + 𝑒− 𝑓 ∈ ℐ. This gives a

base of a different cost as 𝑒 and 𝑓 are in different members of the partition. Hence, we reach

a contradiction. Thus, (ii) implies (iii).

Conversely, assume (iii) holds. Note that the cost of a base B is 𝑐(𝐵) =
∑︀𝑘

𝑖=1 𝑐𝑖|𝑃𝑖 ∩ 𝐵|.

Thus, (iii) implies that every base has the same cost
∑︀𝑘

𝑖=1 𝑐𝑖𝑟(𝑃𝑖).

Case (iii) ⇔ (iv). Assume (iii) holds. Since 𝑥 ∈ 𝐵(𝑀), 𝑥 is a convex combination of

the bases of the matroid, i.e. 𝑥 =
∑︀

𝐵 𝐵𝜒(𝐵) where 𝜒(𝐵) denotes the characteristic vector

for the base 𝐵. Thus, (iii) implies that 𝑥(𝑃𝑖) =
∑︀

𝐵 𝜆𝐵|𝐵 ∩ 𝑃𝑖| =
∑︀

𝐵 𝜆𝐵𝑟(𝑃𝑖) = 𝑟(𝑃𝑖) for

all 𝑖 ∈ {1, . . . , 𝑘}.

Conversely assume (iv) and consider any base B of the matroid. Then, 𝑟(𝐸) = |𝐵| =∑︀𝑘
𝑖=1 |𝐵 ∩ 𝑃𝑖|≤(1)

∑︀𝑘
𝑖=1 𝑟(𝑃𝑖)

(2)
=
∑︀𝑘

𝑖=1 𝑥(𝑃𝑖) = 𝑥(𝐸) = 𝑟(𝐸), where (1) follows from rank

inequality and (2) follows from (iv) for each 𝑃𝑖. Thus, equality holds in (1) and we get that

for each base 𝐵, |𝐵 ∩ 𝑃𝑖| = 𝑟(𝑃𝑖).

Case (iii) ⇔ (v). Assume (iii) and let 𝐶 be a circuit. Let 𝑒 ∈ 𝐶 and 𝐵 be a base that

contains 𝐶 − 𝑒. Hence, the unique circuit in 𝐵 + 𝑒 is 𝐶. Thus, for any element 𝑓 ∈ 𝐶 − 𝑒,

𝐵−𝑒+𝑓 ∈ ℐ. Hence, (iii) implies that all the elements of 𝐶−𝑒 must lie in the same member

138

of the partition as 𝑒 does. Hence, ∃𝑖 : 𝐶 ⊆ 𝑃𝑖.

Conversely, assume (v). Consider any two bases 𝐵 and 𝐵′ such that 𝐵 ∖ 𝐵′ = {𝑒} and

𝐵′−𝐵 = {𝑓} for some 𝑒, 𝑓 ∈ 𝐸. Let 𝐶 be the unique circuit in 𝐵′+𝑒 and hence 𝑓 ∈ 𝐶. It fol-

lows from (v) that 𝑒, 𝑓 are in the same member of the partition, and hence |𝐵∩𝑃𝑖| = |𝐵′∩𝑃𝑖|

for all 𝑖 ∈ {1, . . . , 𝑘}. Since we know there exists a base 𝐵𝑖 such that |𝐵𝑖 ∩ 𝑃𝑖| = 𝑟(𝑃𝑖) for

each 𝑖, hence all bases must have the same intersection with each 𝑃𝑖 and (iii) follows.

Corollary 5. Consider a game where each player plays a base of the graphic matroid 𝑀(𝐺)

on a graph 𝐺, and the loss matrix of the row player is the identity matrix 𝐼 ∈ RE×E. Then

there exists a symmetric Nash-equilibrium if and only if every block of 𝐺 is uniformly dense.

Proof. Since the loss matrix is the identity matrix, 𝑥(𝑒) = 𝑐𝑖 for all 𝑒 ∈ 𝑃𝑖. Theorem 18 (v)

implies that each 𝑃𝑖 is a union of blocks of the graph. Further, as 𝑥(𝑃𝑖) = 𝑟(𝑃𝑖) = 𝑐𝑖|𝑃𝑖|,

each 𝑃𝑖 (and hence each block contained in 𝑃𝑖) is uniformly dense.

Corollary 6. Given any point 𝑥 ∈ RE, 𝑥 > 0 in the base polytope of a matroid 𝑀 = (𝐸, ℐ),

one can construct a matroid game for which (𝑥, 𝑥) is the symmetric Nash-equilibrium.

Proof. Let the loss matrix 𝐿 be defined as 𝐿𝑒,𝑒 = 1/𝑥𝑒 for 𝑒 ∈ 𝐸 and 0 otherwise. Then,

𝐿𝑥(𝑒) = 1 for all 𝑒 ∈ 𝐸. Thus, all the bases have the same cost under 𝐿𝑥. It follows from

Theorem 18 that (𝑥, 𝑥) is a symmetric Nash-equilibrium of this game.

Uniqueness: Consider a symmetric loss matrix 𝐿 such that 𝐿𝑒,𝑓 = 1 for all 𝑒, 𝑓 ∈ 𝐸. Note

that any feasible point in the base polytope 𝐵(𝑀) forms a symmetric Nash-equilibrium.

Hence, we need a stronger condition for the symmetric Nash-equilibria to be unique. We

note that for positive and negative-definite loss matrices, symmetric Nash-equilibria are

unique, if they exist.

Theorem 19. Consider the game with respect to a matroid 𝑀 = (𝐸, ℐ) with an associated

rank function 𝑟 : 𝐸 → R+. Let 𝐿 be the loss matrix for the row player such that it is positive-

definite, i.e. 𝑥𝑇𝐿𝑥 > 0 for all 𝑥 ̸= 0. Then, if there exists a symmetric Nash-equilibrium of

the game, it is unique.

Proof. Suppose (𝑥, 𝑥) and (𝑦, 𝑦) are two symmetric Nash-equilibria such that 𝑥 ̸= 𝑦, then

the value of the game is 𝑥𝑇𝐿𝑥 = 𝑦𝑇𝐿𝑦. Then, 𝑥𝑇𝐿𝑧 ≤ 𝑥𝑇𝐿𝑥 ≤ 𝑧𝑇𝐿𝑥 ∀𝑧 ∈ 𝐵(𝑀) implying

139

that 𝑥𝑇𝐿𝑧 ≤ 𝑥𝑇𝐿𝑥 ≤ 𝑥𝑇𝐿𝑇 𝑧 ∀𝑧 ∈ 𝐵(𝑀). Since 𝐿 is symmetric, we get 𝑥𝑇𝐿𝑥 = 𝑥𝑇𝐿𝑧

∀𝑧 ∈ 𝐵(𝑀). Similarly, we get 𝑦𝑇𝐿𝑦 = 𝑦𝑇𝐿𝑧 ∀𝑧 ∈ 𝐵(𝑀). Consider 𝑧 = 𝑥+𝑦
2

. Then,

𝑧𝑇𝐿𝑧 = (𝑥+𝑦)
2

𝑇
𝐿𝑧 = 𝑥

2
𝑇𝐿𝑧 + 𝑦

2
𝑇𝐿𝑧 = 𝑥

2
𝑇𝐿𝑥 + 𝑦

2
𝑇𝐿𝑦. This contradicts the strict convexity

of the quadratic form of 𝑥𝑇𝐿𝑥. Hence, 𝑥 = 𝑦 and there exists a unique symmetric Nash-

equilibrium.

Lexicographic optimality: We finally note that symmetric Nash-equilibria are closely

related to the concept of being lexicographically optimal as studied by Fujishige in 1980

[Fujishige, 1980]. For a matroid 𝑀 = (𝐸, ℐ), 𝑥 ∈ 𝐵(𝑀) is called lexicographically optimal

with respect to a positive weight vector 𝑤 if the |𝐸|-tuple of numbers 𝑥(𝑒)/𝑤(𝑒) (𝑒 ∈ 𝐸)

arranged in the order of increasing magnitude is lexicographically maximum among all |𝐸|-

tuples of numbers 𝑦(𝑒)/𝑤(𝑒) (𝑒 ∈ 𝐸) arranged in the same manner for all 𝑦 ∈ 𝐵(𝑀). We

evoke the following theorem from [Fujishige, 1980].

Theorem 20. Let 𝑥 ∈ 𝐵(𝑀) and 𝑤 be a positive weight vector. Define 𝑐(𝑒) = 𝑥(𝑒)/𝑤(𝑒)

(𝑒 ∈ 𝐸) and let the distinct numbers of 𝑐(𝑒) (𝑒 ∈ 𝐸) be given by 𝑐1 < 𝑐2 < . . . < 𝑐𝑝.

Furthermore, define 𝑆𝑖 ⊆ 𝐸 (𝑖 = 1, 2, . . . , 𝑝) by

𝑆𝑖 = {𝑒|𝑒 ∈ 𝐸, 𝑐(𝑒) ≤ 𝑐𝑖} (𝑖 = 1, 2, . . . , 𝑝).

Then the following are equivalent:

(i) 𝑥 is the unique lexicographically optimal point in 𝐵(𝑀) with respect to the weight vector

𝑤;

(ii) 𝑥(𝑆𝑖) = 𝑟(𝑆𝑖) (𝑖 = 1, 2, . . . , 𝑝).

The following corollary gives an algorithm for computing symmetric Nash-equilibria for

matroid games under positive diagonal loss matrices.

Corollary 7. Consider a matroid game with a diagonal loss matrix 𝐿 such that 𝐿𝑒,𝑒 > 0 for

all 𝑒 ∈ 𝐸. If there exists a symmetric Nash-equilibrium for this game, then it is the unique

lexicographically optimal point in 𝐵(𝑀) with respect to the weights 1/𝐿𝑒,𝑒 (𝑒 ∈ 𝐸).

140

The proof follows from observing the partition of edges with respect to the weight vector

𝐿𝑥, and proving that symmetric Nash-equilibria satisfy the sufficient conditions for being a

lexicographically optimal base. Lexicographically optimal bases can be computed efficiently

using [Fujishige, 1980], [Nagano, 2007b], or by a single projection using the Inc-fix algorithm

from Chapter 3. Hence, one could compute the lexicographically optimal base 𝑥 for a weight

vector defined as 𝑤(𝑒) = 1/𝐿𝑒,𝑒 (𝑒 ∈ 𝐸) for a positive diagonal loss matrix 𝐿, and check if

that is a symmetric Nash-equilibrium. If it is, then it is also the unique symmetric Nash-

equilibrium and if it is not then there cannot be any other symmetric Nash-equilibrium.

141

142

Chapter 7

Conclusions

“The best journeys answer questions that in the beginning you didn’t even think to ask.”
- 180 Degrees South.

We conclude this thesis with a summary of our contributions and a discussion of future

research directions.

7.1 Summary

In this thesis, we considered three fundamental questions over combinatorial polytopes mo-

tivated by bottlenecks in various algorithms in online and convex optimization. We first

developed in Chapter 3 an algorithm, Inc-Fix, for separable convex minimization over

submodular base polytopes that increases the value of elements in the gradient space in a

greedy manner. We show that the intermediate iterates can be rounded to the base polytope,

thereby allowing the algorithm to allow for early termination. Inc-Fix requires access to

only a submodular function evaluation oracle, and we show a worst-case running time of 𝑂(𝑛)

submodular function minimizations or 𝑂(𝑛) parametric submodular function minimizations.

However, we can obtain significantly faster running times (𝑂(𝑛(log 𝑛 + 𝑑))) when the sub-

modular function is cardinality-based, with 𝑑 distinct values (𝑑 ≤ 𝑛). Next, in Chapter 4, we

consider the line search problem in extended submodular polyhedra that computes the max-

imum feasible movement in a given direction starting with a point inside the polytope. We

143

showed that the discrete Newton’s algorithm converges in at most 𝑂(𝑛2) iterations, where

each iterations requires a submodular function minimization. The analysis required results

on length of sequences of ring families as well as on the length of sequence of sets such that

the submodular function value on these increases geometrically. In Chapter 5, we devel-

oped a general framework for simulating the multiplicative weights update algorithm over

the vertex set of combinatorial polytopes, for online linear optimization. We showed that

efficient approximate counting oracles can be used to get a polynomial worst-case running

time, and that this framework can also be used to minimize convex functions over the space

of the elements of the ground set. These results can be viewed as an extended formulation

for convex optimization, and as a by product, we show that any point in a polytope can

be decomposed efficiently into an approximate product distribution over the vertex set with

the help of generalized approximate counting oracles. Finally, we viewed these results in the

context of finding Nash-equilibria in two-player zero-sum games in Chapter 6 and compared

their applicability and limitations. We augmented this comparison by proving structural

results about symmetric Nash-equilibria for two-player matroid games with diagonal loss

matrices, which can be in turn used to find (if they exist) these equilibria by minimizing a

single separable convex function.

We believe that the research presented in this thesis opens up a lot of interesting research

questions, and we survey some of these below, with respect to each chapter.

7.2 Open Problems

We present the open problems in the context of the techniques used and theorems we prove

from different chapters.

7.2.1 Separable convex minimization

The Inc-Fix algorithm starts with 𝑥(0) = 0 or 𝑥(0) = (∇ℎ)−1(𝑐1) such that 𝑥(0) ∈ 𝑃 (𝑓).

Our first open problem is whether this condition can be relaxed.

Open Problem 1. Can one start Inc-Fix with an arbitrary point in the submodular

polytope?

144

The answer to the above question can potentially reduce the worst-case running time

for projections, especially when used within an online or convex optimization method like

online mirror descent. These methods maintain an iterate that is already close to the required

projection and ideally one should be able to make use of this information.

Next, for implementing the Inc-Fix algorithm, we showed that 𝑂(1) parametric sub-

modular function minimizations can be used for computing a single increase in the gradient

space. However, it would be interesting if one can compute all the gradient increases in a

single parametric SFM.

Open Problem 2. How can one perform Inc-Fix in a single parametric submodular func-

tion minimization?

One approach for this might be to solve the line search problem in a single parametric

SFM while always maintaining a feasible certificate in the submodular polytope. What we

can do currently is to use the discrete Newton’s method to find most violated constraints

iteratively while converging to the maximum feasible movement along the line.

In Chapter 3, we only looked at separable convex minimization over submodular polyhe-

dra. Separability helped us increase the value of elements while only having a local effect on

the corresponding gradients. The natural question is whether we can minimize non-separable

convex functions.

Open Problem 3. How can one minimize arbitrary convex functions over the submodular

polytopes exactly, assuming infinite precision arithmetic?

Recall that for minimizing a convex function ℎ(𝑥) over 𝑥 ∈ 𝑃 , one must construct a

vector 𝑥* such that the first-order approximation of ℎ at 𝑥* is minimized by 𝑥* itself, i.e.

𝑥* ∈ argmin𝑥∈𝑃 ∇ℎ(𝑥*)𝑇𝑥. This is independent of the combinatorial set being submodular,

and that leads to fourth open problem in this chapter.

Open Problem 4. Develop an algorithm to minimize (separable) convex functions over

other combinatorial polytopes where the linear optimization methods are well-understood, for

instance, for the bipartite matching polytope.

The minimum cost bipartite matching problem on a graph with 𝑛 vertices can be solved

using the well-known Hungarian algorithm that runs in 𝑂(𝑛3) time [Kuhn, 1955]. To mini-

mize convex functions over the bipartite matching polytope one can either use the machinery

145

of general convex optimization, or the MWU algorithm from Chapter 5 (that uses an expen-

sive approximate counting oracle). Bipartite matchings can also be represented as doubly

stochastic matrices1. Bregman projections with respect to the entropic mirror map can

then be interpreted as Sinkhorn balancing, which involves iteratively normalizing rows and

columns of the matrix until convergence [Helmbold and Warmuth, 2009]. It would be inter-

esting to develop a (faster, exact) combinatorial algorithm for minimizing convex functions

over the bipartite matching polytope.

7.2.2 Parametric line search

In Chapter 4, we showed an 𝑂(𝑛2) bound on the number of iterations of the discrete Newton’s

algorithm for the problem of finding max 𝛿 : min𝑆 𝑓(𝑆)−𝛿𝑎(𝑆) ≥ 0 for an arbitrary direction

𝑎 ∈ R𝑛. Even though we showed that certain parts of our analysis were tight, we do not

know whether this bound is tight.

Open Problem 5. What is the number of breakpoints of the piecewise linear function

𝑔(𝛿) = min𝑆 𝑓(𝑆)− 𝛿𝑎(𝑆), in the case of an arbitrary direction 𝑎?

Our results do not imply anything on this number of breakpoints, and this number could

still be quadratic, exponential or even linear. In the simpler, nonnegative setting 𝑎 ∈ R𝑛
+,

it is not just that the discrete Newton’s algorithm takes at most 𝑛 iterations, but it is also

the case that the number of breakpoints of the lower envelope is at most 𝑛 (by the property

of strong quotients). On the other hand, there exist instances of parametric minimum

𝑠− 𝑡 cut problems where the minimum cut value has an exponential number of breakpoints

[Mulmuley, 1999]. However, this corresponds to the more general problem min𝑆 𝑓(𝑆)−𝛿𝑎(𝑆)

where 𝑓(·) is submodular but the function 𝑎(·) is not modular (and not even supermodular

or submodular as the slopes of the parametric capacities can be positive or negative).

7.2.3 Generalized approximate counting

In Chapter 5, we noted that generalized approximate counting gives an efficient way to

compute projections onto the simplex of the vertex set when the probability distribution is

1A matrix is doubly stochastic if it has non-negative entries and each row and column sums to 1.

146

implicitly described using multipliers on the ground set of elements. It would be interesting

to see if minimizing certain convex functions is equivalent to computing entropic projections

over the simplex of vertices, thereby enabling efficient approximate counting.

Open Problem 6. Can we do approximate counting by minimizing a convex function?

When does optimization imply counting?

We know that there exist matroids where approximate counting will necessarily involve

exponential calls to the submodular evaluation oracle [Azar et al., 1994], however we can

minimize separable strictly convex functions over any submodular base polytope in poly-

nomial calls to the oracle. If indeed approximate counting can be performed using convex

minimization (not just by minimizing separable convex functions), then this would solve an

open problem of approximately counting the number of matchings in a graph (the problem

of counting the exact number of perfect matchings in a graph is #𝑃 -hard, [Valiant, 1979]).

7.2.4 Nash-equilibria in two-player games

In Chapter 6, we discussed the combinatorial structure of symmetric Nash-equilibria for

matroid games with bilinear loss functions, however the structure of Nash-equilibria still

remains unclear.

Open Problem 7. What is the combinatorial structure of approximate Nash-equilibria

of two-player zero-sum matroid games? Can we find these without using online learning or

solving the von Neumann linear program?

We include some examples of Nash-equilibria for the spanning tree game (each player

plays spanning trees of a given graph) under the identity loss matrix, i.e. solutions of

min𝑥∈𝑃 (𝑓) max𝑦∈𝑃 (𝑓) 𝑥
𝑇𝑦, in Appendix B. We hope that these can help the reader in testing

or disproving possible conjectures on the structure of equilibria.

147

148

Appendix A

First-order optimization methods

In this chapter, we list the setting and iterations of the following derivatives of the mirror

descent algorithm:

(i) mirror descent, lazy mirror descent and mirror prox used for minimizing a convex

function ℎ(𝑥) over a convex set 𝑋 in Table A.1,

(ii) stochastic smooth mirror descent used for minimizing smooth convex functions under

noisy gradient information, and saddle point mirror descent and saddle point mirror

prox for finding saddle-points in Table A.2,

(iii) stochastic mirror descent for minimizing a convex function ℎ(𝑥) under noisy gradient

information, stochastic gradient descent which is a special case of the stochastic mirror

descent, and online mirror descent for online convex optimization in Table A.3.

In each of these variants, one needs to compute a Bregman projection (refer to Section

2.2.2 for details) whenever 𝑋 is a constrained set.

149

Algorithm Iterations Notes

Mirror descent

𝑥(1) = arg min
𝑥∈𝑋∩𝒟

𝜔(𝑥)

∇𝜔(𝑦(𝑡+1)) = ∇𝜔(𝑥(𝑡))− 𝜂𝑔𝑡

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1))

For min𝑥∈𝑋 ℎ(𝑥), ℎ is convex, 𝐺-

Lipschitz w.r.t. ‖ · ‖, 𝜂 = 𝑅
𝐺

√︁
2𝜅
𝑡

then

ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥𝑠)− ℎ(𝑥*) ≤ 𝑅𝐺

√︂
2

𝜅𝑡

Lazy mirror de-
scent

𝑥1 ∈ arg min
𝑥∈𝑋∩𝒟

𝜔(𝑥),

∇𝜔(𝑦(𝑡)) = ∇𝜔(𝑦(𝑡))− 𝜂𝑔𝑡,

𝑥(𝑡) = argmin
𝑥∈𝑋∩𝒟

𝜂

𝑡−1∑︁
𝑠=1

𝑔𝑇𝑠 𝑥+ 𝜔(𝑥).

For min𝑥∈𝑋 ℎ(𝑥), ℎ is convex, 𝐺-
Lipschitz, 𝑔𝑡 ∈ 𝜕ℎ(𝑥(𝑡)), 𝜂 =
𝑅
𝐺

√︀
𝜅
2𝑡 then

ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥𝑠)− ℎ(𝑥*) ≤ 2𝑅𝐺

√︂
2

𝜅𝑡

Mirror prox

𝑥(1) ∈ arg min
𝑥∈𝑋∩𝒟

𝜔(𝑥),

∇𝜔(𝑦(𝑡+1)′) = ∇𝜔(𝑥(𝑡))− 𝜂∇ℎ(𝑥𝑡)

𝑦(𝑡+1) ∈ argmin
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1)′)

∇𝜔(𝑥(𝑡+1)′) = ∇𝜔(𝑥(𝑡))− 𝜂∇ℎ(𝑦(𝑡+1))

𝑥(𝑡+1) ∈ arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑥
(𝑡+1)′)

For min𝑥∈𝑋 ℎ(𝑥), ℎ convex, 𝛽-
smooth w.r.t. ‖ · ‖, 𝜂 = 𝜅

𝛽 then

ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑦𝑠+1)− ℎ(𝑥*) ≤ 𝛽𝑅2

𝜅𝑡

Table A.1: Mirror Descent and its variants. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is 𝜅-strongly
convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) −min𝑥∈𝑋 𝜔(𝑥), 𝜂 is the learning rate. This table
summarizes convergence rates as presented in [Bubeck, 2014].

150

Algorithm Iterations Notes

Smooth stochas-
tic mirror de-
scent

𝑥(1) = arg min
𝑋∩𝒟

𝜔(𝑥),

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

(︀
𝜂𝑔(𝑥𝑡)

𝑇𝑥+

𝐷𝜔(𝑥, 𝑥
(𝑡))
)︀

For min𝑥∈𝑋 ℎ(𝑥), ℎ is convex, 𝛽-
smooth, under a stochastic ora-
cle: given 𝑥 ∈ 𝑋 and ℎ : 𝑋 →
R convex, returns 𝑔(𝑥) such that
E(𝑔(𝑥)) ∈ 𝜕ℎ(𝑥), let E(‖∇ℎ(𝑥) −
𝑔(𝑥)‖2*) ≤ 𝜎2, with step-size 1

𝛽+1/𝜂 ,

𝜂 = 𝑅
𝐵

√︁
2
𝑡 , then

E(ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥𝑠+1))−min
𝑥∈𝑋

ℎ(𝑥)

≤ 𝑅𝜎

√︂
2

𝑡
+

𝛽𝑅2

𝑡

Saddle point
mirror descent*

𝑧(1) ∈ arg min
𝑧∈𝑍∩𝒟

𝜔(𝑧)

𝑧(𝑡+1) ∈ arg min
𝑧∈𝑍∩𝒟

𝑛𝑔𝑇𝑡 𝑧 +𝐷𝜔(𝑧, 𝑧
(𝑡))

For min𝑥∈𝑋 max𝑦∈𝑌 𝜑(𝑥, 𝑦), 𝑎 =
𝐺𝑋/𝑅𝑋 , 𝑏 = 𝐺𝑌 /𝑅𝑌 , 𝜂 =√︀
2/𝑡, 𝑥̃(𝑡) = 1

𝑡

∑︀𝑡
𝑠=1 𝑥𝑠, 𝑦(𝑡) =

1
𝑡

∑︀𝑡
𝑠=1 𝑦𝑠 then

max
𝑦∈𝑌

𝜑(𝑥̃(𝑡), 𝑦)−min
𝑥∈𝑋

𝜑(𝑥, 𝑦(𝑡))

≤ (𝑅𝑋𝐺𝑋 +𝑅𝑌 𝐺𝑌)
√︀
2/𝑡

Saddle point
mirror prox*

𝑧(1) ∈ arg min
𝑧∈𝑍∩𝒟

𝜔(𝑧)

𝑤(𝑡+1) = arg min
𝑧∈𝑍∩𝒟

[︀
𝐷𝜔(𝑧, 𝑧

(𝑡))

+𝜂(∇𝑥𝜑(𝑧
(𝑡))−∇𝑦𝜑(𝑧

(𝑡)))𝑇 𝑧
]︀

𝑧(𝑡+1) = argmin
𝑧∈𝑍∩𝒟

[︀
𝐷𝜔(𝑧, 𝑧

(𝑡))

+𝜂(∇𝑥𝜑(𝑤
(𝑡+1))−∇𝑦𝜑(𝑤

(𝑡+1)))𝑇 𝑧
]︀

For min𝑥∈𝑋 max𝑦∈𝑌 𝜑(𝑥, 𝑦), 𝑧(𝑡) =
(𝑥(𝑡), 𝑦(𝑡)), 𝑤𝑡 = (𝑢(𝑡), 𝑣(𝑡)), 𝜑
is (𝛽11, 𝛽12, 𝛽22, 𝛽21) smooth, 𝑎 =
1/𝑅2

𝑋 , 𝑏 = 1/𝑅2
𝑌 , 𝜂 = 𝜂𝑠𝑝𝑚𝑝,

𝑢̃(𝑡) = 1
𝑡

∑︀𝑡
𝑠=1 𝑢

(𝑠+1), 𝑣(𝑡) =
1
𝑡

∑︀𝑡
𝑠=1 𝑣

(𝑠+1) then

max
𝑦∈𝑌

𝜑(𝑢̃(𝑡), 𝑦)−min
𝑥∈𝑋

𝜑(𝑥, 𝑣(𝑡)) ≤ 2

𝜂𝑡

Table A.2: Mirror Descent and its variants. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is 𝜅-strongly
convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) −min𝑥∈𝑋 𝜔(𝑥), 𝜂 is the learning rate. For saddle
point problems, 𝑍 = 𝑋 × 𝑌 , 𝜔(𝑧) = 𝑎𝜔𝑋(𝑥) + 𝑏𝜔𝑌 (𝑦), 𝑔(𝑡) = (𝑔𝑋,𝑡, 𝑔𝑌,𝑡), 𝑔𝑋,𝑡 = 𝜕𝑥𝜑(𝑥𝑡, 𝑦𝑡), 𝑔𝑌,𝑡 ∈
𝜕𝑦(−𝜑(𝑥𝑡, 𝑦𝑡)). 𝜂𝑠𝑝𝑚𝑝 = 1/(2max(𝛽11𝑅

2
𝑋 , 𝛽22𝑅

2
𝑌 , 𝛽12𝑅𝑋𝑅𝑌 , 𝛽21𝑅𝑋𝑅𝑌)). This table summarizes

convergence rates as presented in [Bubeck, 2014].

151

Algorithm Iterations Notes

Stochastic mir-
ror descent

𝑥(1) = arg min
𝑋∩𝒟

𝜔(𝑥),

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

(︀
𝜂𝑔(𝑥𝑡)

𝑇𝑥+

𝐷𝜔(𝑥, 𝑥
(𝑡))
)︀

For min𝑥∈𝑋 ℎ(𝑥), under a stochas-
tic oracle: given 𝑥 ∈ 𝑋 and
ℎ : 𝑋 → R convex, returns 𝑔(𝑥)
such that E(𝑔(𝑥)) ∈ 𝜕ℎ(𝑥), let

E(‖𝑔(𝑥)‖2*) ≤ 𝐵2, 𝜂 = 𝑅
𝐵

√︁
2
𝑡 , then

E(ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥𝑠))−min
𝑥∈𝑋

ℎ(𝑥) ≤ 𝑅𝐵

√︂
2

𝑡

Stochastic gra-
dient descent

𝑥(1) = arg min
𝑋∩𝒟

‖𝑥‖2,

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

‖𝑥(𝑡) − 𝜂𝑔(𝑥(𝑡))− 𝑥‖2

For min𝑥∈𝑋 ℎ(𝑥), under a stochas-
tic oracle: given 𝑥 ∈ 𝑋 and
ℎ : 𝑋 → R convex, returns 𝑔(𝑥)
such that E(𝑔(𝑥)) ∈ 𝜕ℎ(𝑥), let

E(‖𝑔(𝑥)‖2*) ≤ 𝐵2, 𝜂 = 𝑅
𝐵

√︁
2
𝑡 , then

E(ℎ(
1

𝑡

𝑡∑︁
𝑠=1

𝑥(𝑠)))−min
𝑥∈𝑋

ℎ(𝑥) ≤ 𝑅𝐵

√︂
2

𝑡

Online mirror
descent

𝑥(1) = arg min
𝑋∩𝒟

𝜔(𝑥),

∇𝜔(𝑦(𝑡+1)) = ∇𝜔(𝑥(𝑡))− 𝜂∇𝑙(𝑡)(𝑥(𝑡)),

𝑥(𝑡+1) = arg min
𝑥∈𝑋∩𝒟

𝐷𝜔(𝑥, 𝑦
(𝑡+1))

For regret minimization:
𝑅𝑡 =

∑︀𝑡
𝑖=1 𝑙

(𝑖)(𝑥(𝑖)) −
min𝑥∈𝑋

∑︀𝑡
𝑖=1 𝑙

(𝑖)(𝑥), under loss
functions 𝑙(𝑖) revealed in each
round 𝑖, 𝑙(𝑖) : 𝑋 → R convex and
‖∇𝑙(𝑖)‖* ≤ 𝐺 ∀𝑖 ∈ {1, . . . , 𝑡}, set

𝜂 = 𝑅
𝐺

√︁
2𝑘
𝑡 then:

𝑡∑︁
𝑖=1

𝑙(𝑖)(𝑥(𝑖))−min
𝑥∈𝑋

𝑡∑︁
𝑖=1

𝑙(𝑖)(𝑥) ≤ 𝑅𝐺

√︂
2𝑡

𝑘

Table A.3: Mirror Descent and relatives. Here, the mirror map 𝜔 : 𝑋 ∩ 𝒟 → R is 𝜅-strongly
convex with respect to ‖ · ‖, 𝑅2 = max𝑥∈𝑋 𝜔(𝑥) −min𝑥∈𝑋 𝜔(𝑥), 𝜂 is the learning rate. This table
summarizes convergence rates as presented in [Bubeck, 2014].

152

Appendix B

Examples of Nash-equilibria

In this chapter, we include some examples of Nash-equilibria of two-player zero-sum games

when each player plays a spanning tree of the given graph, under an identity loss ma-

trix (see Chapter 6 for background and details). More precisely, we give solutions to

min𝑥∈𝐵(𝑓) max𝑦∈𝐵(𝑓) 𝑥
𝑇𝑦, where 𝐵(𝑓) is Edmonds’ characterization of the spanning tree poly-

tope with 𝑓(·) being the rank function of the graphic matroid.

(i) For the graph in Figure B-1(a), the marginals of the Nash-equilibrium (𝑝*, 𝑞*) are given

in Figures B-1(b) and (c). Here,

𝑝* : 𝑝*(𝑒) =

⎧⎪⎨⎪⎩4/9 𝑒 ∈ 𝐸(1, 2, 3, 4, 5),

3/4 𝑒 ∈ 𝐸(1, 6, 7, 8, 3),

and for the column player

𝑞* : 𝑞*(𝑒) =

⎧⎪⎨⎪⎩1/3 𝑒 ∈ 𝐸(1, 2, 3, 4, 5),

1 𝑒 ∈ 𝐸(1, 6, 7, 8, 3).

The value of the game is 𝑝*𝑇 𝑞* = 4.333, this is also the cost of the minimum spanning

tree under weights 𝑞*, and the cost of the maximum spanning tree under weights 𝑝*.

Here the partition of the edge set is the same under 𝑝* as well as 𝑞*.

(ii) For the graph in Figure B-2(a), the marginals of the Nash-equilibrium (𝑝*, 𝑞*) are

153

Figure B-1: (a) 𝐺3 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer) (c) Optimal
strategy for the column player (maximizer).

illustrated in Figures B-2(b) and (c). Here,

𝑝* : 𝑝*(𝑒) =

⎧⎪⎨⎪⎩3/4 𝑒 ∈ 𝐸 ∖ 𝐸(1, 2, 3),

2/3 𝑒 ∈ 𝐸(1, 2, 3),

and for the column player 𝑞* = 11/12𝜒(𝐸). It can be verified that the value of the

game is 𝑝*𝑇 𝑞* = 33/4. This example shows that the span of the set with edges of the

maximum marginals for both the row and column player strategies contains the set of

edges with the minimum marginals.

Figure B-2: (a) 𝐺4 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer), (c) Optimal
strategy for the column player (maximizer).

154

(iii) Finally, for the graph in Figure B-3(a), the marginals of the Nash-equilibrium (𝑝*, 𝑞*),

as illustrated in Figures B-3(b) and (c) are

𝑝* : 𝑝*(𝑒) =

⎧⎪⎨⎪⎩5/12 𝑒 ∈ 𝐸 ∖ 𝐸(7, 8, 9),

7/12 𝑒 ∈ 𝐸(7, 8, 9)

and for the column player

𝑞* : 𝑞*(𝑒) =

⎧⎪⎨⎪⎩1/3 𝑒 ∈ 𝐸(1, 2, 3, 4, 5, 6)

2/3 𝑒 ∈ 𝐸 ∖ 𝐸(1, 2, 3, 4, 5, 6).

It can be verified that the value of the game is 𝑝*𝑇 𝑞* = 11/3.

Figure B-3: (a) 𝐺5 = (𝑉,𝐸), (b) Optimal strategy for the row player (minimizer), (c) Optimal
strategy for the column player (maximizer).

155

156

Bibliography

[Arora et al., 2012] Arora, S., Hazan, E., and Kale, S. (2012). The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications. Theory of Computing, 8:121–164.
[Pages 25, 48, 108, and 131.]

[Asadpour et al., 2010] Asadpour, A., Goemans, M. X., Madry, A., Oveis Gharan, S., and
Saberi, A. (2010). An O (log n/log log n)-approximation Algorithm for the Asymmetric
Traveling Salesman Problem. Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). [Page 113.]

[Audibert et al., 2013] Audibert, J., Bubeck, S., and Lugosi, G. (2013). Regret in online
combinatorial optimization. Mathematics of Operations Research, 39(1):31–45. [Page 46.]

[Azar et al., 1994] Azar, Y., Broder, A. Z., and Frieze, A. M. (1994). On the problem of
approximating the number of bases of a matriod. Information Processing Letters, 50(1):9–
11. [Pages 134 and 147.]

[Banerjee et al., 2005] Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clus-
tering with bregman divergences. Journal of Machine Learning Research, 6:1705–1749.
[Pages 15 and 40.]

[Beck and Teboulle, 2003] Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear
projected subgradient methods for convex optimization. Operations Research Letters,
31(3):167–175. [Pages 26 and 46.]

[Ben-Tal and Nemirovski, 2001] Ben-Tal, A. and Nemirovski, A. (2001). Lectures on modern
convex optimization: analysis, algorithms, and engineering applications. SIAM. [Page 43.]

[Bixby et al., 1985] Bixby, R. E., Cunningham, W. H., and Topkis, D. M. (1985). The partial
order of a polymatroid extreme point. Mathematics of Operations Research, 10(3):367–378.
[Page 76.]

[Blum et al., 2008] Blum, A., Hajiaghayi, M. T., Ligett, K., and Roth, A. (2008). Regret
minimization and the price of total anarchy. Proceedings of the fortieth annual ACM
Symposium on Theory of Computing (STOC), pages 1–20. [Page 49.]

[Boyd and Vandenberghe, 2009] Boyd, S. and Vandenberghe, L. (2009). Convex optimiza-
tion. Cambridge University Press. [Pages 40 and 43.]

157

[Bregman, 1967] Bregman, L. M. (1967). The relaxation method of finding the common
point of convex sets and its application to the solution of problems in convex programming.
USSR computational mathematics and mathematical physics, 7(3):200–217. [Page 39.]

[Bubeck, 2011] Bubeck, S. (2011). Introduction to online optimization. Lecture Notes,
Princeton University. [Page 46.]

[Bubeck, 2014] Bubeck, S. (2014). Theory of Convex Optimization for Machine Learning.
arXiv preprint arXiv:1405.4980. [Pages 15, 16, 38, 40, 41, 43, 150, 151, and 152.]

[Cesa-Bianchi and Lugosi, 2006] Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learn-
ing, and games. Cambridge University Press. [Pages 46 and 126.]

[Chakrabarty et al., 2016] Chakrabarty, D., Lee, Y. T., Sidford, A., and Wong, S. C. (2016).
Subquadratic submodular function minimization. arXiv preprint arXiv:1610.09800. [Pages
35 and 76.]

[Chakrabarty et al., 2006] Chakrabarty, D., Mehta, A., and Vazirani, V. V. (2006). Design
is as easy as optimization. In Automata, Languages and Programming, pages 477–488.
Springer. [Page 126.]

[Cunningham, 1985a] Cunningham, W. H. (1985a). On submodular function minimization.
Combinatorica, 5(3):185–192. [Page 35.]

[Cunningham, 1985b] Cunningham, W. H. (1985b). Optimal attack and reinforcement of a
network. Journal of the ACM (JACM), 32(3):549–561. [Pages 23 and 88.]

[Edmonds, 1970] Edmonds, J. (1970). Submodular functions, matroids, and certain poly-
hedra. Combinatorial Structures and their applications, pages 69–87. [Pages 22, 33, 35,
and 52.]

[Edmonds, 1971] Edmonds, J. (1971). Matroids and the greedy algorithm. Mathematical
Programming, 1(1):127–136. [Page 60.]

[Fleischer and Iwata, 2003] Fleischer, L. and Iwata, S. (2003). A push-relabel framework for
submodular function minimization and applications to parametric optimization. Discrete
Applied Mathematics, 131(2):311–322. [Pages 35, 37, and 76.]

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956). An algorithm for quadratic pro-
gramming. Naval Research Logistics quarterly, 3(1-2):95–110. [Pages 41, 47, and 77.]

[Freund et al., 2015] Freund, R. M., Grigas, P., and Mazumder, R. (2015). An extended
Frank-Wolfe method with “In-Face" directions, and its application to low-rank matrix
completion. arXiv preprint arXiv:1511.02204. [Pages 23 and 88.]

[Fujishige, 1980] Fujishige, S. (1980). Lexicographically optimal base of a polymatroid with
respect to a weight vector. Mathematics of Operations Research. [Pages 46, 49, 77, 140,
and 141.]

158

[Fujishige, 2005] Fujishige, S. (2005). Submodular functions and optimization, volume 58.
Elsevier. [Pages 37 and 67.]

[Gidel et al., 2016] Gidel, G., Jebara, T., and Lacoste-Julien, S. (2016). Frank-wolfe algo-
rithms for saddle point problems. arXiv preprint arXiv:1610.07797. [Page 137.]

[Goemans et al., 2017] Goemans, M. X., Gupta, S., and Jaillet, P. (2017). Discrete Newton’s
algorithm for parametric submodular function minimization. Proceedings of the nineteenth
conference on Integer Programming and Combinatorial Optimization (IPCO). [Page 96.]

[Grigas, 2016] Grigas, P. P. E. (2016). Methods for convex optimization and statistical learn-
ing. PhD thesis, Massachusetts Institute of Technology. [Page 43.]

[Groenevelt, 1991] Groenevelt, H. (1991). Two algorithms for maximizing a separable con-
cave function over a polymatroid feasible region. European Journal of Operational Re-
search, 54(2):227–236. [Pages 46 and 77.]

[Grötschel et al., 1981] Grötschel, M., Lovász, L., and Schrijver, A. (1981). The ellipsoid
method and its consequences in combinatorial optimization. Combinatorica, 1(2):169–
197. [Pages 35, 126, and 130.]

[Håstad, 1994] Håstad, J. (1994). On the size of weights for threshold gates. SIAM Journal
on Discrete Mathematics, 7(3):484–492. [Page 96.]

[Hazan, 2012] Hazan, E. (2012). Survey: The convex optimization approach to regret mini-
mization. Optimization for Machine Learning, page 287. [Page 46.]

[Hazan and Koren, 2015] Hazan, E. and Koren, T. (2015). The computational power of
optimization in online learning. arXiv preprint arXiv:1504.02089. [Page 110.]

[Helmbold and Schapire, 1997] Helmbold, D. P. and Schapire, R. E. (1997). Predicting
nearly as well as the best pruning of a decision tree. Machine Learning, 27(1):51–68.
[Pages 49, 117, and 118.]

[Helmbold and Warmuth, 2009] Helmbold, D. P. and Warmuth, M. K. (2009). Learning per-
mutations with exponential weights. The Journal of Machine Learning Research, 10:1705–
1736. [Page 146.]

[Immorlica et al., 2011] Immorlica, N., Kalai, A. T., Lucier, B., Moitra, A., Postlewaite, A.,
and Tennenholtz, M. (2011). Dueling algorithms. In Proceedings of the 43rd annual ACM
Symposium on Theory of Computing, pages 215–224. ACM. [Pages 28 and 126.]

[Itakura and Saito, 1968] Itakura, F. and Saito, S. (1968). Analysis synthesis telephony
based on the maximum likelihood method. In Proceedings of the 6th International Congress
on Acoustics, volume 17, pages C17–C20. pp. C17–C20. [Pages 15 and 40.]

[Iwata, 2008] Iwata, S. (2008). Submodular function minimization. Mathematical Program-
ming, 112(1):45–64. [Pages 37 and 89.]

159

[Iwata et al., 1997] Iwata, S., Murota, K., and Shigeno, M. (1997). A fast parametric sub-
modular intersection algorithm for strong map sequences. Mathematics of Operations
Research, 22(4):803–813. [Pages 36 and 37.]

[Iwata and Orlin, 2009] Iwata, S. and Orlin, J. B. (2009). A simple combinatorial algorithm
for submodular function minimization. In Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1230–1237. Society for Industrial and Applied
Mathematics. [Pages 24, 76, and 90.]

[Jaggi, 2013] Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex op-
timization. In Proceedings of the 30th International Conference on Machine Learning
(ICML), pages 427–435. [Pages 41 and 42.]

[Jerrum et al., 2004] Jerrum, M., Sinclair, A., and Vigoda, E. (2004). A polynomial-time
approximation algorithm for the permanent of a matrix with nonnegative entries. ACM
Symposium of Theory of Computing, 51(4):671–697. [Pages 26, 117, and 118.]

[Jerrum et al., 1986] Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. (1986). Random
generation of combinatorial structures from a uniform distribution. Theoretical Computer
Science, 43:169–188. [Page 115.]

[Koo et al., 2007] Koo, T., Globerson, A., C. Pérez, X., and Collins, M. (2007). Structured
prediction models via the matrix-tree theorem. In Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 141–150. [Pages 26, 49, and 118.]

[Koolen et al., 2010] Koolen, W. M., Warmuth, M. K., and Kivinen, J. (2010). Hedging
Structured Concepts. Proceedings of the 23rd Annual Conference on Computational Learn-
ing Theory (COLT). [Pages 26 and 118.]

[Koutis et al., 2010] Koutis, I., Miller, G. L., and Peng, R. (2010). Approaching optimality
for solving SDD linear systems. Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 235–244. [Pages 117 and 136.]

[Krichene et al., 2015] Krichene, W., Krichene, S., and Bayen, A. (2015). Efficient bregman
projections onto the simplex. In Proceedings of the 54th IEEE Conference on Decision
and Control (CDC), pages 3291–3298. IEEE. [Pages 23 and 47.]

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment problem.
Naval Research Logistics quarterly, 2(1-2):83–97. [Page 145.]

[Lee et al., 2015] Lee, Y. T., Sidford, A., and Wong, S. C. (2015). A faster cutting plane
method and its implications for combinatorial and convex optimization. In Foundations
of Computer Science (FOCS), pages 1049–1065. IEEE. [Pages 35, 70, 71, 76, and 90.]

[Lovász et al., 1988] Lovász, L., Grötschel, M., and Schrijver, A. (1988). Geometric algo-
rithms and combinatorial optimization. Berlin: Springer-Verlag, 33:34. [Page 130.]

160

[Lyons and Peres, 2005] Lyons, R. and Peres, Y. (2005). Probability on trees and networks.
[Page 117.]

[Martin, 1991] Martin, R. K. (1991). Using separation algorithms to generate mixed integer
model reformulations. Operations Research Letters, 10(April):119–128. [Page 131.]

[McCormick and Ervolina, 1994] McCormick, S. T. and Ervolina, T. R. (1994). Computing
maximum mean cuts. Discrete Applied Mathematics, 52(1):53–70. [Page 94.]

[Mulmuley, 1999] Mulmuley, K. (1999). Lower bounds in a parallel model without bit oper-
ations. SIAM Journal on Computing, 28(4):1460–1509. [Page 146.]

[Nagano, 2007a] Nagano, K. (2007a). A faster parametric submodular function minimization
algorithm and applications. Mathematical Engineering Technical Report. [Pages 15, 37,
70, 71, and 76.]

[Nagano, 2007b] Nagano, K. (2007b). On convex minimization over base polytopes. Integer
Programming and Combinatorial Optimization. [Pages 47, 48, 71, 77, 89, and 141.]

[Nagano, 2007c] Nagano, K. (2007c). A strongly polynomial algorithm for line search in
submodular polyhedra. Discrete Optimization, 4(3):349–359. [Page 24.]

[Nagano and Aihara, 2012] Nagano, K. and Aihara, K. (2012). Equivalence of convex mini-
mization problems over base polytopes. Japan Journal of Industrial and Applied Mathe-
matics, pages 519–534. [Pages 64 and 77.]

[Nemirovski, 2004] Nemirovski, A. (2004). Prox-method with rate of convergence 𝑜(1/𝑡) for
variational inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251. [Pages 41
and 136.]

[Nemirovski and Yudin, 1983] Nemirovski, A. S. and Yudin, D. B. (1983). Problem com-
plexity and method efficiency in optimization. Wiley-Interscience, New York. [Pages 38,
42, and 45.]

[Nesterov, 2005] Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Math-
ematical Programming, 103(1):127–152. [Page 120.]

[Nesterov, 2013] Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media. [Pages 42 and 43.]

[Orlin, 2009] Orlin, J. B. (2009). A faster strongly polynomial time algorithm for submodular
function minimization. Mathematical Programming, 118(2):237–251. [Pages 35 and 76.]

[Orlin, 2013] Orlin, J. B. (2013). Max flows in O(nm) time, or better. In Proceedings of
the forty-fifth annual ACM Symposium on Theory of Computing (STOC), pages 765–774.
ACM. [Page 135.]

[Oxley, 2006] Oxley, J. G. (2006). Matroid theory, volume 3. Oxford University Press, USA.
[Page 137.]

161

[Papadimitriou and Roughgarden, 2008] Papadimitriou, C. H. and Roughgarden, T. (2008).
Computing correlated equilibria in multi-player games. Journal of the ACM (JACM),
55(3):14. [Pages 125 and 126.]

[Radzik, 1998] Radzik, T. (1998). Fractional combinatorial optimization. In Handbook of
Combinatorial Optimization, pages 429–478. Springer. [Pages 48, 90, 94, and 96.]

[Rakhlin and Sridharan, 2013] Rakhlin, A. and Sridharan, K. (2013). Optimization, learn-
ing, and games with predictable sequences. In Advances in Neural Information Processing
Systems (NIPS), pages 3066–3074. [Page 136.]

[Rakhlin and Sridharan, 2014] Rakhlin, A. and Sridharan, K. (2014). Lecture Notes on
Online Learning. Draft. [Page 45.]

[Robinson, 1951] Robinson, J. (1951). An iterative method of solving a game. Annals of
Mathematics, pages 296–301. [Pages 49 and 110.]

[Rothvoß, 2014] Rothvoß, T. (2014). The matching polytope has exponential extension com-
plexity. In Proceedings of the 46th annual ACM Symposium on Theory of Computing
(STOC), pages 263–272. ACM. [Page 131.]

[Schnorr, 1976] Schnorr, C. (1976). Optimal algorithms for self-reducible problems. In
ICALP, volume 76, pages 322–337. [Page 115.]

[Schrijver, 2000] Schrijver, A. (2000). A combinatorial algorithm minimizing submodu-
lar functions in strongly polynomial time. Journal of Combinatorial Theory, Series B,
80(2):346–355. [Page 35.]

[Schrijver, 2003] Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency.
Springer. [Pages 34, 37, 64, 135, and 137.]

[Sinclair and Jerrum, 1989] Sinclair, A. and Jerrum, M. (1989). Approximate counting,
uniform generation and rapidly mixing Markov chains. Information and Computation,
82(1):93–133. [Page 115.]

[Singh and Vishnoi, 2014] Singh, M. and Vishnoi, N. K. (2014). Entropy, optimization and
counting. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC), pages 50–59. ACM. [Pages 113, 117, and 118.]

[Suehiro et al., 2012] Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., and Nagano, K.
(2012). Online prediction under submodular constraints. In International Conference on
Algorithmic Learning Theory, pages 260–274. Springer. [Pages 23, 47, and 86.]

[Takimoto and Warmuth, 2003] Takimoto, E. and Warmuth, M. K. (2003). Path kernels and
multiplicative updates. The Journal of Machine Learning Research, 4:773–818. [Pages 49,
117, and 118.]

[Topkis, 1978] Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Oper-
ations Research, 26(2):305–321. [Pages 36, 48, and 89.]

162

[Valiant, 1979] Valiant, L. G. (1979). The complexity of computing the permanent. Theo-
retical Computer Science, 8(2):189–201. [Pages 117 and 147.]

[von Neumann, 1928] von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathe-
matische Annalen, 100(1):295–320. [Page 126.]

[Washburn and Wood, 1995] Washburn, A. and Wood, K. (1995). Two person zero-sum
games for network interdiction. Operations Research. [Page 126.]

[Welsh, 2009] Welsh, D. (2009). Some problems on approximate counting in graphs and
matroids. In Research Trends in Combinatorial Optimization, pages 523–544. Springer.
[Pages 117 and 118.]

[Wilson, 1996] Wilson, D. B. (1996). Generating random spanning trees more quickly than
the cover time. In Proceedings of the twenty-eighth annual ACM Symposium on Theory
of Computing (STOC), pages 296–303. ACM. [Pages 117 and 118.]

[Yasutake et al., 2011] Yasutake, S., Hatano, K., Kijima, S., Takimoto, E., and Takeda, M.
(2011). Online linear optimization over permutations. In International Symposium on
Algorithms and Computation, pages 534–543. Springer. [Pages 23, 47, and 86.]

[Zinkevich, 2003] Zinkevich, M. (2003). Online convex programming and generalized in-
finitesimal gradient ascent. Proceedings of the twentieth International Convergence on
Machine Learning (ICML). [Page 45.]

163

	Introduction
	Separable convex minimization
	Parametric line search
	Generalized approximate counting
	Nash-equilibria in two-player games
	Roadmap of thesis

	Background
	Notation
	Background
	Submodular functions and their minimization
	First-order optimization methods
	Online learning framework

	Related Work

	Separable Convex Minimization
	The Inc-Fix algorithm
	Correctness of Inc-Fix
	Equivalence of problems
	Rounding to approximate solutions

	Implementing the Inc-Fix algorithm
	O(n) parametric gradient searches
	O(n) submodular function minimizations
	Running time for Inc-Fix

	Cardinality-based submodular functions
	Card-Fix algorithm

	Parametric Line Search
	Ring families
	Analysis of discrete Newton's Algorithm
	Weaker cubic upper bound
	Quadratic upper bound

	Geometrically increasing sequences
	Interval submodular functions
	Cut functions

	Approximate Generalized Counting
	Online linear optimization
	Convex optimization

	Nash-Equilibria in Two-player Games
	Using the ellipsoid algorithm
	Bregman projections v/s approximate counting
	Combinatorial Structure of Nash-Equilibria

	Conclusions
	Summary
	Open Problems
	Separable convex minimization
	Parametric line search
	Generalized approximate counting
	Nash-equilibria in two-player games

	First-order optimization methods
	Examples of Nash-equilibria

