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Abstract

A well-known computational bottleneck in various first order methods like mirror
descent is that of computing a certain Bregman projection. We give a novel
algorithm, INC-FIX, for computing these projections under separable mirror maps
and more generally for minimizing separable convex functions over submodular
base polytopes. For minimizing divergences onto cardinality-based submodular
base polytopes defined on ground set E, we prove an O(|E|2) running time under
any uniformly separable mirror map. This matches the running time of [9, 13]
for projections under KL-divergence and squared Euclidean distance, recovers an
algorithm from [16] for computing projections over the simplex.

1 Introduction

First order methods like mirror descent and its variants (exponential weights, projected gradient
descent, lazy mirror descent, mirror prox, saddle-point mirror prox, stochastic gradient descent, online
stochastic mirror descent etc) enjoy near-optimal regret bounds in online optimization and near-
optimal convergence rates in convex optimization [28, 3, 27, 12, 10]. These methods are typically
based on a strongly-convex1 function ω, known as the mirror map (or the distance generating function),
that must satisfy additional properties of divergence of the gradient. A well-known computational
bottleneck in these algorithms is that of computing a generalized notion of projection (whenever the
decision set is bounded), defined by the function Dω(x, y) = ω(x)−ω(y)−∇ω(y)T (x− y), called
the Bregman divergence of the mirror map. Squared Euclidean distance, KL-divergence, Itakura-Saito
distance, Logistic loss, p-norm distance are some examples of Bregman divergences. For general
convex sets, taking a Bregman projection is often a separable convex minimization problem. One
could exploit the general machinery of convex optimization such as the ellipsoid algorithm, but the
question is if we can do better by exploiting the structure of the set.

In this work, we consider polytopes that arise from submodular set functions, and model a number of
important combinatorial concepts (see Table 1). We consider the problem of computing Bregman
projections over these polytopes, and more generally the problem of minimizing separable convex
functions over them. This problem becomes important whenever there is a combinatorial structure
on the decision set (for instance, for online learning algorithms, structured regression, equilibria in
games when a player plays combinatorial strategies).

In 1980, Fujishige gave the monotone algorithm to find the minimum norm point, i.e., minx∈X ‖x‖2
where X is a submodular base polytope [19]. There has been a large volume of work in the last 30
years [24, 25, 9] to develop faster combinatorial algorithms for separable convex minimization over
submodular base polytopes, specifically focusing on the decomposition algorithm of [20]. These

1f : X → R is κ-strongly convex w.r.t. ‖·‖ if f(x) ≥ f(y)+gT (x−y)+ κ
2
‖x−y‖2, ∀x, y ∈ X, g ∈ ∂f(x)
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approaches however rely on generating a sequence of violated inequalities and achieve a feasible
solution only at the completion of the algorithm (characteristic of dual approaches).

We give a novel generalization of Fujishige’s monotone algorithm, INC-FIX, that is fundamentally
different from the known decomposition algorithm. It always maintains a feasible solution in the
submodular polytope (characteristic of primal approaches). A useful property of our algorithm is that
it can be terminated earlier to obtain a point in the submodular polytope, which can then be rounded
(in multiple ways) to obtain a point in the base polytope. The key idea of the algorithm comes from
first order optimality conditions, i.e. if a point x∗ is a minimizer of a convex function h : X → R
over a convex set X , then it must hold that ∇h(x∗)T (x∗ − z) ≤ 0 for2 all points z ∈ X . Read
differently, if one somehow knew the value of ∇h(x∗) = c (say), then x∗ would minimize the linear
function cT z over z ∈ X . A simple greedy algorithm can be used to minimize linear cost functions
over submodular polytopes [6]. We use this to construct a point x∗ such that it is a minimizer of
its gradient function∇h(x∗). Using the recent result of [17], the INC-FIX algorithm can be shown
to have a running time of Õ(|E|5γ + |E|6) time, where γ is the time for one submodular function
evaluation and E is the ground set of elements. Our approach provides useful lower bounds such that
the algorithm can be terminated earlier with provable optimality gaps.

Further, we consider the special case of cardinality-based submodular functions3. We show that
our algorithm can be implemented overall in O(|E|2) time under any uniformly separable mirror
map of the form ω(x) =

∑
e∈E w(x(e)) (Table 2), as long as a certain non-linear equation in a

single parameter can be solved exactly4. This matches the running time of specialized algorithms
[9] and [13] that work only for squared Euclidean distance and KL-divergence and recovers an
algorithm from [16] for computing projections over the simplex. Our work, however, applies to
any uniformly separable mirror map. We believe that the key ideas developed in these algorithms
may be useful to compute projections under Bregman divergences over other polyhedra, as long as
the linear optimization for those is well-understood. Note that our approach gives exact solutions5

irrespective of the structure of the submodular function, as opposed to other approximate methods
like Frank-Wolfe [18] that scale as O(1/ε) where ε is the gap from the optimal function value.

Table 1: Problems and the submodular functions (on ground set of elements E) that give rise to them.
Problem Submodular function, S ⊆ E (unless specified)
k out of n experts (k-simplex), E = {1, . . . , n} f(S) = min{|S|, k}
k-truncated permutations over E = {1, . . . , n} f(S) = (n − k)|S| for |S| ≤ k, f(S) = k(n −

k) +
∑|S|
s=k+1(n+ 1− s) if |S| ≥ k

Spanning trees on G = (V,E) f(S) = |V (S)| − κ(S), κ(S) is the number of
connected components of S

Matroids over ground set E: M = (E, I), I ⊆ 2E f(S) = rM (S), the rank function of the matroid
Coverage of T: given T1, . . . , Tn ⊆ T f(S) = |

⋃
i∈S Ti|, E = {1, . . . , n}

Cut functions on a directed graph D = (V,E), c :
E → R+

f(S) = c(δout(S)), S ⊆ V

Table 2: Examples of some popular uniform separable mirror maps and their corresponding divergences.
(w′)−1 = w∗′, where w∗ is Legendre-Fenchel transform of w defined as w∗(s) = supx∈R sx− w(x).
ω(x) =

∑
w(xe) Fw = (w′)−1 Dω(x, y) Divergence

‖x‖2/2 x
∑
e(xe − ye)

2/2 Squared Euclidean Distance∑
e xe log xe − xe ex

∑
e

(
xe log(xe/ye)−xe+ye

)
Generalized KL-divergence

−
∑
e log xe −1/x

∑
e

(
xe/ye− log(xe/ye)−1

)
Itakura-Saito Distance∑

e xe log xe+
∑
e(1−

xe) log(1− xe)
ex

1+ex

∑
e xe log(xe/ye) + (1 −

xe) log((1− xe)/(1− ye))
Logistic Loss

Due to wide applicability of separable convex minimization over base polytopes, this work has
applications in online combinatorial optimization ([31], [14], [13], [21, 1], [22]), obtaining equilibria
for multi-player games ([15], [29], [8], [11]), sparse learning methods [2], computing bounds for the
partition function of log-submodular distributions [5] and network analysis [26].

2Here,∇h means gradient of the function h.
3A submodular function f : 2E → R is called cardinality-based if f(S) = g(|S|) for some concave g.
4we assume oracle access to solutions of these equations to achieve an O(|E|2) running time
5given that the non-linear single variable equation can be solved exactly
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2 Convex Minimization on Base Polytopes of Polymatroids

Consider a ground set E of elements on which the submodular function is defined. Let f be a
submodular set function, i.e. f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ E. Further,
let f be monotone6 and normalized (f(∅) = 0). We can assume w.l.o.g. that f(A) > 0 for A 6= ∅.
Given such a function f , the submodular polytope (or independent set polytope) is defined as
P (f) = {x ∈ RE

+ : x(U) ≤ f(U) ∀ U ⊆ E} and the base polytope as B(f) = {x ∈ RE
+ : x(E) =

f(E), x(U) ≤ f(U) ∀ U ⊆ E} [6]. For x ∈ RE , we use the shorthand x(U) for
∑

e∈U x(e) and by
both x(e) and xe we mean the value of x on element e.

Let us consider any strongly convex separable function h : D → R, defined over a convex open
set D ⊆ RE such that h(x) =

∑
e∈E he(x(e)) (and some technical conditions like P (f) ⊆ D are

satisfied). For example, the squared Euclidean distance is h(x) =
∑

e he(x(e)) = (xe − ye)2 with
D = RE , and KL-divergence is h(x) =

∑
e xe ln(xe/ye) with D = RE

+. We give the INC-FIX
algorithm for computing x∗ = argminx∈B(f)

∑
e∈E he(xe).

Key idea of the INC-FIX algorithm: The algorithm is iterative and maintains a vector x ∈ P (f)∩D.
When considering x we associate a weight vector given by ∇h(x) and consider the set of minimum
weight elements. We move x within P (f) in a direction such that (∇h(x))e increases uniformly on
the minimum weight elements, until one of two things happen: (i) either continuing further would
violate a constraint defining P (f), or (ii) the set of elements of minimum weight changes. If the
former happens, we fix the tight elements and continue the process on non-fixed elements. If the
latter happens, then we continue increasing the value of the elements in the modified set of minimum
weight elements. The complete description of the INC-FIX algorithm is given in Algorithm 1 (in the
appendix) and we include an example showing how the gradients are increased in each iteration in
Figure 1 for developing intuition. The correctness of the algorithm follows from first order optimality
conditions and Edmonds’ greedy algorithm and crucially relies on the following theorem.
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Figure 1: (left) Illustrative water-filling view of the INC-FIX algorithm for minimizing the squared Euclidean
distance h(x) = 1

2
‖x− y‖2. We start with x = 0 and at any time in the algorithm h′(xe) = xe − ye. Squiggly

lines depict how the point moves in time as the gradient value increases. First, {e1} becomes tight (x(e1) =
f({e1})), next iteration {e1, e4} are tight, then the tight set grows to {e1, e2, e4, e5} and finally the optimum is
reached: x(4) = x∗ when all the elements become tight and the gradient is∇h(x(4)) = (s1, s3, s4, s2, s3, s4)T .
(right) A vector y (generated from a uniform distribution) is projected under different divergences (Euclidean,
entropy, logistic and Itakura-Saito) onto a cardinality-based submodular base polytope (generated using a
threshold function g) over a ground set of 100 elements.

6f is monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ E. For any non-negative submodular function f , we can
consider a corresponding monotone submodular function f̄ such that P (f) = P (f̄) (see e.g., Section 44.4 of
[30]), where P (f) is the independent set polytope defined as P (f) = {x ∈ RE

+ : x(U) ≤ f(U) ∀ U ⊆ E}.
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Theorem 2.1. Consider any strongly convex separable function h : D → R, and monotone submod-
ular function f : 2E → R with f(∅) = 0. Assume P (f) ⊆ D and ∇h(D) = RE . For x∗ ∈ RE ,
let F1, F2, . . . , Fk be a partition of the ground set E such that (∇h(x∗))e = ci for all e ∈ Fi and
ci < cj for i < j. Then, x∗ = argminz∈B(f) h(z) if and only if x∗ lies in the face Hopt of B(f)

given by Hopt := {z ∈ B(f)| z(F1 ∪ . . . ∪ Fi) = f(F1 ∪ . . . ∪ Fi) ∀ 1 ≤ i ≤ k}.

Bregman Projections over Base Polytopes For minimizing the squared Euclidean distance and
the KL-divergence, the INC-FIX algorithm reduces to starting from a point inside P (f) and moving
along lines7 χ(M) and y · χ(M) respectively, for a certain subset of elements M ⊆ E. In each
iteration, the size of M reduces by at least one element, leading to termination of the algorithm
after at most |E| line searches. Each of these line searches inside P (f) can be performed using the
discrete Newton method [4] that requires one parametric submodular function minimization (PSFM)
(for e.g. [26]) or O(|E|) submodular function minimizations (SFM) (for e.g. [17]). The running
time for INC-FIX is Õ(|E|5γ + |E|6) where γ is the time required for one function evaluation, using
the algorithm for SFM [17]. This approach works more generally for separable convex functions h
whenever the increase in the gradient space corresponds to moving along a line in P (f).

Cardinality-based Submodular Functions A submodular function is cardinality-based if f(S) =
g(|S|) (S ⊆ E) for some concave function g : N → R. We consider uniformly separable mirror
maps given by ω(x) =

∑
e∈E w(x(e)) for x ∈ RE where w : Dw → R is strongly-convex (Table 2).

To minimize the divergence with respect to a point y ∈ RE , we give a modification of the INC-FIX
algorithm that starts by selecting a total order � on the elements in E such that s � t whenever
y(s) > y(t). We show that each intermediate iterate x in the algorithm satisfies x(s) ≥ x(t) whenever
s � t for all s, t ∈ E. Because of this property, we can check for tight constraints in P (f) efficiently
by considering the top k elements of each iterate (as the submodular function is cardinality-based).
We give the complete description of this algorithm in Algorithm 2 (in the appendix). We show that
the algorithm simplifies to have a running time of O(|E|2) for any uniformly separable mirror map
over cardinality-based submodular base polytopes, assuming an oracle access to solve the following
problem:

Find ε :
∑
e∈M

(w′)−1(ε+ w′(ye)) = c (1)

for a given c ≥ 0 and M ⊆ E. Since w′ and (w′)−1 are increasing functions, binary search can be
used to solve this subproblem. For minimizing squared Euclidean distance and KL-divergence, this
subproblem can be solved exactly in constant time. In Figure 1, we consider a vector y ∈ [0, 1]100

generated from the uniform distribution that is sorted so that y(e1) ≥ y(e2) . . . ≥ y(e100) and
project it under different divergences onto the base polytope of a submodular function given by
f(S) = g(|S|) where g(|S|) = min(0.7|S|, 14). We plot the values of 100 elements in the order of
decreasing y-values, in Figure 1, and note that the projected points satisfy the same ordering.

Rounding to the base polytope A nice property of the INC-FIX algorithm is that once an element
value is fixed, it stays at that value for the rest of the algorithm. In any iteration i of the INC-
FIX algorithm (1 ≤ i ≤ |E|), let the iterate be x(i) with the maximum set of tight elements Ti.
Then, x(i)(e) = x∗(e) for all e ∈ Ti where x∗ = argminz∈B(f) h(z). This gives a lower bound
when minimizing Bregman divergences: h(x∗) ≥

∑
e∈Ti

he(x
(i)
e ) that converges monotonically

to the optimal solution value. Further, consider any ordering on the elements of the ground set
E = {e1, e2, . . . , en} such that Ti = {e1, e2, . . . , e|Ti|}. Then, one can round x(i) to a point x in
the base polytope B(f) by simply setting x(e) = x(i)(e) for e ∈ Ti and x(ej) = f({e1, . . . ej})−
f({e1, . . . , ej−1}) for all j > |Ti|. For minimizing Bregman divergences, this gives a practical way
of determining gap from optimality and terminating the algorithm with an approximate projection.
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A Convex Minimization on Base Polytopes of Polymatroids

Technical Description of the INC-FIX algorithm: The complete description of the INC-FIX algo-
rithm is given in Algorithm 1. We refer to the initial starting point as x(0). The algorithm constructs
a sequence of points x(0), x(1), . . . , x(k) = x∗ in P (f). At the beginning of iteration i, the set of
non-fixed elements whose value can potentially be increased without violating any constraint is
referred to as Ni−1. The iterate x(i) is obtained by increasing the value of minimum weight elements
of x(i−1) in Ni−1 weighted by (∇h(x))e such that the resulting point stays in P (f). Iteration i of the
main loop ends when some non-fixed element becomes tight and we fix the value on these elements
by updating Ni. We continue until all the elements are fixed, i.e., Ni = ∅. We denote by T (x) the
maximal set of tight elements8 in x (which is unique by submodularity of f ).

Technical details for the Card-Inc-Fix algorithm: The algorithm starts by selecting a total order
� on the elements in E such that s � t whenever y(s) > y(t). We can show that each increase step
in the INC-FIX algorithm results in iterates x(0), x(1), . . . such that x(i)(s) ≥ x(i)(t) whenever s � t
for all s, t ∈ E, for each iteration i. Since the value of x(i) follows the ordering �, we can check
for tight constraints by considering the top k elements of each iterate (as the submodular function is
cardinality-based). Furthermore, the maximal tight set T (x) is simply the largest |T (x)| elements
of x, simplifying computations further. We give the complete description of the CARD-INC-FIX

8A set S ⊆ E is tight if x(S) = f(S).
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Algorithm 1: INC-FIX

1 input :f : 2E → R, h =
∑
e∈E he, and input x(0)

2 output :x∗ = arg minz∈B(f)

∑
e he(z(e))

3 N0 = E, i = 0;
4 repeat // Main loop starts

5 i← i+ 1, x = x(i−1)

6 M = argmine∈Ni−1
∇(h(x))e // M is the minimum weight elements of x

7 while T (x) ∩M = ∅ do // Inner loop starts

8 ε1 = max{δ : (∇h)−1(∇h(x) + δχ(M)) ∈ P (f)} // Maximum possible increase in gradient
while staying in P(f)

9 ε2 = mine∈Ni−1\M (∇h(x))e −mine∈Ni−1(∇h(x))e // Gap to 2nd highest gradient

10 x← (∇h)−1(∇h(x) + min(ε1, ε2)χ(M)) // Increase till M changes or new tight constraint
11 M = argmine∈Ni−1

(∇h(x))e // Update set M of minimum weight elements

12 end
13 x(i) = x, Mi = M // Bookkeeping

14 Ni = Ni−1 \ (Mi ∩ T (x(i))) // Fix tight elements in Mi

15 until Ni = ∅; // Until no element can be increased

16 Return x∗ = x(i).

algorithm in Algorithm 2. Let Fw(ε, y) be the value an element must be raised to such that the
gradient of the divergence with respect to y is ε, i.e. Fw(ε, y) = (w′)−1(ε+ w′(y)).

Algorithm 2: CARD-FIX

1input :f : f(S) = g(|S|) for S ⊆ E, w(·) : Dw → R, ω(x) =
∑
e w(x(e)), y ∈ RE , and input x(0)

2output :x∗ = argminz∈B(f)Dω(z, y)

33 i = 0
44 Set � s.t. s � t whenever y(s) > y(t) (∀s, t ∈ E), let E = {e1 � e2 . . . � em} (m = |E|)
55 repeat
66 i← i+ 1, x = x(i−1)

77 For k ∈ {|T (x)|+ 1, . . . ,m}, set εk :
∑ek
e=e|T (x)|+1

Fw(εk, ye) = g(k)− g(|T (x)|)
88 ε(i) = min|T (x)|+1≤k≤m εk

99 x(i)(e)←
{
x(e) for e ∈ T (x),

max{Fw
(
ε(i), ye

)
, x(e)} for e ∈ E \ T (x)

10 until T (x) = E;
1111 Return x∗ = x(i).

We now state the main theorem about the correctness of the CARD-INC-FIX algorithm.
Theorem A.1. Consider a submodular function f cardinality-based, mirror map ω(x) =∑

e∈E w(x(e)), and w : Dw → R strongly convex. Let Dw be a convex open set in R, P (f) ⊆ D,
B(f) ∩ D 6= ∅, w′(Dw) = R such that there exists a valid starting point. Then, the output of
CARD-INC-FIX algorithm is x∗ = argminz∈B(f)Dω(z, y) in running time O(|E|2).

The CARD-INC-FIX algorithm can be seen to be a simplified version to INC-FIX that uses the
properties of cardinality-based submodular functions. Note that since Fw is an increasing functions
of εk, binary search or Newton’s method can be used to solve for εk in the algorithm. The algorithm
simplifies to have a running time of O(|E|2) for any uniformly separable mirror map over cardinality-
based submodular base polytopes, assuming an oracle access to solve for step (7). We refer to the full
version of the paper for complete proofs and details.
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