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Abstract

In this project, we consider a restriction of the Traveling Salesman Problem

which is formally stated as - ‘Given the costs associated with traveling

between any pair of n cities, find the tour of the minimum cost which visits

each city once and exactly once ’. Held and Karp [4] formulated a lower

bound for TSP using 1-trees in 1970. The value of this lower is equal to

the value of SubTour LP and is conjectured to have an integrality gap of

3/4. Motivated by obtaining a 4/3 approximation for the traveling salesman

problem using the Held-Karp bound, we consider the special case when

distances satisfy the graph metric on an underlying unweighted graph G.

When G is 2-vertex-connected and has a Hamiltonian path, we show how

to obtain a spanning Eulerian trail of length atmost (4/3)n. When G is

3-regular 3-edge-connected, the Held-Karp bound is n and we show a novel

approach of finding a 4/3 approximation for TSP on G.

During the course of the project, we also looked at properties of graphs

that are LP-oblivious and at the structure of half-integer vertices. We give

comparisons of our work to recent unpublished results, and detail further

directions for research.
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Chapter 1

Introduction

The Traveling Salesman Problem is one of the oldest and the most extensively

worked on problems in the field of algorithms. It is formally stated as : Given

the costs associated with traveling between any pair of n cities, find the tour

of the minimum cost which visits each city once and exactly once. This

is equivalent to finding the minimum cost hamiltonian cycle in a complete

weighted graph. Mathematically, suppose we have costs cij for 1 ≤ i, j ≤

n, associated with going between each pair of cities, then we want to find a

cyclic permutation σn such that

n∑
i=1

ciσn(i) = minτcyclic

n∑
i=1

ciτn(i)

.

TSP is an NP Hard problem that is NP-Hard to approximate. The proof of

the same can be found in the book Approximation Algorithms [28]. Some

restrictions that make the problem approximable are - metric TSP, assymetric
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TSP with triangle inequality and symmetric (1,2) TSP. For symmetric

TSP, the distances cij = cji for all i,j ∈ [1,n] and for assymetric there is

no such condition. Edges cost in 1,2-TSP are restricted to 1 and 2 only.

The best known tour constructing algorithms for these three cases give an

approximation factor of - 3/2 (for metric TSP, refer to [3]), log(n)/loglog(n)

(for asymmetric with triangle inequality, refer to [21]) and 8/7 (for 1,2

symmetric TSP, refer to [22]). Another interesting restriction to TSP is

Graphical TSP where the metric used is graph metric. Given an undirected,

unweighted graph G = (V,E), the cost between two vertices i and j is given

by the length of the shortest path between i and j ∈ G = (V,E). The solution

on this metric, corresponds to a walk in the underlying graph G. Thus, the

traveling salesman problem becomes the problem of finding the shortest closed

walk on the graph G which visits all vertices of G. The best known algorithm

for graphical TSP was 3/2 approximation algorithm given by Christofides in

1978. Two recent unpublished results give a 1.5 - ε approximation (Gharan

et al [25]) and 1.461 approximation (Svensson et al [23]) for graphical TSP.

The goal for Metric TSP is to reach a 4/3 approximation, towards proving

the long standing conjecture that there must exist a 4/3 approximation.

Working with Graphical TSP that is a subset of Metric TSP simplifies the

problem and gives the added advantage of exploiting the structure of the

graphs.

The basis of the 4/3 conjecture comes from the Held Karp heuristic where

Held and Karp used 1-trees as a relaxation of optimal tours. One way of

obtaining a lower bound to an optimization problem is to solve the relaxed

problem optimally. In this case, it translates to constructing a tour which
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satisfies a subset of the properties of any TSP tour. The relaxed Subtour

Linear Program for TSP is given as -

minimize
∑

1≤i≤j≤n
cijxij

subject to : x(δ(v)) = 2 ∀ v ∈ V

x(δ(S)) ≥ 2 ∀ φ ⊂ S ⊂ V

xe ≥ 0

xe ≤ 1

It was proven in [4] that the value of Held-Karp hueristic is equal to the opti-

mum value of the Sub-Tour LP. The Held-Karp heuristic typically generates

solutions of cost above 99% of the optimal. But, there is a known example

involving a subcubic graph where the solution obtained is 3/4OPT . Since no

example worse than this is known, it is conjectured that the integrality gap

of the SubTour LP is 3/4 and there exists a 4/3 approximation algorithm

for the TSP.

The objective of this project is to study instances of TSP for which the Held-

Karp heuristic gives the optimal solution, and develop algorithms on these

instances in support of the conjecture. We have restricted ourselves to the

graph metric. We consider a simple question of whether a Hamiltonian path

in a 2-vertex-connected graph can be converted into a spanning Eulerian trail.

For this, we give an algorithm (referred to as the path algorithm)to convert

a given Hamiltonian path into a spanning Eulerian closed trail using atmost
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(4/3)n edges. Next, cubic 3-edge-connected graphs are LP oblivious, that

is the linear programming formulation gives the trivial bound for n in such

graphs. An assignment which achieves the minimum value of n is obtained

by simply assigning xe = 2/3 to each of the edges. Gamarnik et al [18] gave

an algorithm for these graphs with an approximation factor of 3/2− 5/389.

Recently Boyd et al [2] also gave 4/3 approximation for cubic graphs and

7/5 for subcubic graphs. We also, in this thesis, give a 4/3 approximation al-

gorithm for cubic 3-edge-connected graphs, referred to as the cubic algorithm.

In the subsequent chapters, we have discussed some related work, the

path algorithm, the cubic algorithm, and future directions of research.



Chapter 2

Literature Review

In the book Combinatorial Optimisation [27], William Cook et al have very

beautifully explained the history and developments in the travelling

salesman problem. People have studied the TSP in many different ways.

They tried studying the convex polytope of tours and found inequalities

which were facet inducing for these polytopes, like in [19, 20]. There were

classes of polytopes with different properties and hence, different inclusion

relations between them. These inequalities were formed as a generalisation

of those which hold for any tour (giving rise to relaxed tours)- for example -

the subtour elimination constraints and comb inequalities (which are disjoint

and both facet inducing) and then came clique tree inequalities which gen-

eralised subtour and comb inequalities. It is quite interesting how a graph

which satisifies subtour elimination constraints, does not satisfy a mixture of

subtour and degree constraints(which give the comb inequality). Examples

to understand the same can be found in the book or through following papers

[19], [20]. There were also studies quanitifying the advantage of different
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classes of facet inducing inequalities, refer to [24]. Apart from this, Alexander

Shrijver’s book on History of Combinatorial Optimization [29] gives an in-

teresting historical account of TSP that dates back to Kirkman and Hamilton.

The main idea behing N. Christofides’ 3/2 approximation algorithm

(1978) for the metric TSP (refer to [3]) is that after ensuring connectivity,

one can add a minimum number of edges to get a closed walk. For this,

a minimum spanning tree was first found out, then the vertices with odd

degree were matched with a matching of cost no more than 1/2OPT . This

ensured that the degree of all vertices was even, thus giving an Eulerian

graph. Hence, there exists a closed walk of cost no more than 3/2OPT . A

generalisation of this technique is T-joins. A T-join of G = (V,E) is a set of

edges J such that | J ∩ δ(v) |≡| T ∩{v} | (mod2),∀v ∈ V . T-joins can always

be reduced to paths which are edge-disjoint. It is still not clear though how

T-joins can be used to improve the best known approximation factor.

An important approach of approximating a problem is by using lower

bounds. What is the minimum size of a subgraph of G such that every

vertex has a degree greater than or equal to 2 (D2 bound)? Or what is the

smallest 2-edge-connected graph of a subgraph? These questions give a lower

bound for the length of any closed tour that visits all the vertices of the

graph. In their Bachelor’s thesis, Kushal et al [9] explain these lower bounds

in detail. They give relations between the toughness of graph, the D2 bound,

the ear decomposition bound and introduce a new bound - Durability bound.

Another important lower bound is that developed by Held and Karp in
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[4]. The Held-Karp hueristic uses 1-trees that are minimum spanning trees

with an extra edge incident on vertex 1 that makes a loop. Using lagrangian

multipliers, they make sure that the degree of all nodes was as close to 2 as

possible. More analysis on the Held-Karp hueristic can be found in David

Williamson’s master thesis (refer to [18]). It was in this thesis that the 4/3

conjecture was made.

We tried to characterize graphs which have the Held-Karp bound equal

to n. SEP feasible graphs are those where an assignment of positive real

values to the edges of the graph satisfies the constraints of the Subtour LP,

refer to [17]. Such graphs are necessarily 2 vertex-connected, 1-tough and

1-block-tough. Hamiltonian graphs are also SEP feasible and hence these

become necessary conditions for hamiltonianicity. As an aside, a graph that

is t-block-tough is also t-tough. Hence, block-toughness becomes a stronger

condition than toughness, but not a sufficient condition.

Further we explored edge-toughness introduced by Katona et al in [7]

and [12]. The necessary condition for Hamiltonian graphs is that the size of a

cut set S of vertices has to be greater than the number of components of G\S.

For edge-toughness, Katona et al generalize the cut set to a set of vertices and

edges. They present it as a tool to prove non-hamiltonicity. Another known

concept at that time was of non-path-toughness, for which there was no easy

way to prove it for a graph. Non-path-toughness takes a set of vertices (X)

and counts the minimum number of disjoint paths required to connect the

vertices of X. They prove that t-edge-tough is also t-tough; a hamiltonian
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graph is always 1-edge-tough and 2t-toughness implies t-edge-toughness.

Katona et al also prove that there exist (2t− ε)-tough graphs which are not

t-edge-tough. They prove that every 1-edge-tough graph has a 2-factor.

Motivated by some constructions for graphs with held-karp bound equal to n,

we looked at Half-Integral solutions to the Subtour LP. Robert Carr et al

in [ 6] give a 4/3 tour constructing algorithm for half-integer triangle-vertices.

Their algorithm considers a very small portion of actual solutions for which

the Held-Karp bound is n. Although in this paper, they form an interesting

notion of using patterns, that we use later in our path algorithm.

The following section presents some small observations during the course of

the background reading.

Observations

1. Necessary condition for ‖T − join‖ ≤ n/2 is that the graph should be

1-factorable.

2. Held-Karp bound for k-regular and k-edge connected graphs is n. This

can be seen by simply assigning xe = 2/k for each edge.

3. Though SEP feasible graphs are 2-vertex connected, 1-tough and 1-

block-tough, they are not 1-edge-tough and path-tough. A simple

example for an SEP feasible graph which is not 1-edge-tough and path-

tough is shown in figure [??]. Consider the set of vertices A = v1,v2,v3

and the set of edges Y = a,b,c,d,e,f. Let X = {}. Then (X,Y) acts as an

A-separator. Also, considering the same (X,Y), we get the inequality
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Figure 2.1: An SEP Feasible Graph, that is not 1-edge-tough

for edge-toughness. Thus, proving that this graph is not 1-edge-tough

and path-tough. It is SEP-feasible as we can simply assign 1/2 to

the edges a,b,c,d,e,f and 1 to others. This hints at the idea that the

Held-Karp formulation does not really penalise for disjoint paths, but

preserves vertex-related properties(toughness) and connectivity.

4. The construction of graphs in [8] used for disproving 2-tough conjecture

has Held-Karp bound = n. Consider any G(L, u, v, l, 2l + 3), refer to

[8] for definitions. Charge every instance of L with two 1/2-triangles

at vertex u and v and 1-edges otherwise, as shown in the figure [2.2].

Next, since each occurence of u and v is connected, join these through 1
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Figure 2.2: Counter-Example

edges to form a path of the L graphs. Since Kl again has a Hamiltonian

path between any two vertices, raise the edges of the path to 1 to get

a satisfying xe assignment. An example with G(L,u,v,2,5) is shown in

the figure [2.2].

We started with a simple question - Given a Hamiltonian Path in a 2-vertex

connected graph, can we find a walk of length at most 4/3(n) covering all

the vertices? We found an interesting partition of edges which could be used

to solve this problem. This algorithm is referred to as the path algorithm in

this thesis, and detailed in Chapter 3.

In the paper by Gamarnik et al [ 5] give a 3/2-5/389 approximation al-

gorithm for cubic 3-edge-connected graphs, as a step towards supporting

the 4/3 conjecture. Bill Jackson et al in [13] prove that for graphs with

3-edge-connectivity, there exists a spanning even sub-graph such that the

size of each component is atleast 5. To prove this result, they first prove a

stronger statement that for a 3-edge-connected graph G such that there exists

a vertex u with degree = 3 and two edges u1 and u2 incident on u, there
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exists a spanning even subgraph X with {e1, e2} ⊂ E(X) and σ(X) ≥ 5. We

convert their proof into an algorithm for finding an even-spanning subgraph

for a given graph G that satisfies these properties. Using this, we give a 4/3

approximation for cubic 3-edge-connected graphs. This algorithm, called the

cubic algorithm in this thesis, is detailed in Chapter 4.
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Chapter 3

Tours using Hamiltonian

paths

Problem Statement: To find a tour of length (4/3)n, given a hamiltonian

path in an undirected hamiltonian graph.

3.1 Definitions

Let P be the hamiltonian path and let the vertices on the path be labelled as

{v1, . . . , vn}, where n is the number of vertices in the graph. We will follow

the convention that for every edge (vs, vt), s < t. Any edge (vs, vt) is said to

be l-incident at vs and h-incident at vt. From the set of edges {(vs, vk): k ∈

I} incident on a vertex vs, its deepest-edge is (vs, vt) such that t >= k ∀ k ∈

I.

Deepest-edge in an interval of vertices is the one which is h-incident on

the highest indexed vertex and l-incident on a vertex in the interval. Two
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deepest-edges (vs, vt) and (vk, vl) are said to be d-adjacent if s < k < t < l(or

k < s < l < t).

3.2 Algorithm

1. Building a set of deep edges

(a) Include the deepest-edge from the vertex v1 in S.

(b) If the last added deepest-edge is (vk, vl), include in S the deepest-

edge in the interval [v1, vl−1].

(c) Repeat Step 1b till an edge h-incident on vn is included.

(d) Label the edges in the order of addition as {e1, . . . , eK}.

Figure 3.1: Deepest-edges

Claim 1: Step 1 will terminate.

Suppose there is a vertex vi, such that the deepest-edge in the interval

[v1, vi−1] does not cross the vertex vi then vi becomes a cut-vertex and

violates the hamiltonianicity of the given graph.

Claim 2: For i > 2, the deepest-edge ei is l-incident on [vt, vl−1]

where ei−2=(vs, vt) and ei−1=(vk, vl). If it was not so, then either

the fact that it is deepest in the interval [v1, vl−1] will be violated or
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Figure 3.2: Deepest edges will never cross each other

the selection of an earlier edge would be proven to be false. That is,

a situation like Figure 2 can never arise. Only the ‘deeper’ of these

two edges(which is e3 in this case) would have been picked in Step 1,

instead of e2.

2. Splitting vertices: Split every vertex vk on which two deepest-edges

are incident into 2 vertices vk1 and vk2 such that the deepest-edge

which is h-incident on vk becomes h-incident on vk1 and the other

on vk2. The example in Figure 1 thus becomes as shown in Figure 3.

Note that edges which were d-adjacent in the previous graph remain

d-adjacent in the new graph as well. Also, two deepest-edges which

are incident on the same vertex are never d-adjacent.

Figure 3.3: Modified Graph

3. Defining Intervals: Now, define the intervals formed by the end-

points of deepest-edges in the set S as {xi}. For K deepest edges, the
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number of intervals formed will be exactly 2K-1. The intervals for the

modified graph in Figure 3 thus become as shown in Figure 4.

Figure 3.4: Intervals defined on the modified graph

4. Forming Patterns: Define three patterns Pi for i={1,2,3} using

intervals {xj : j = i mod 3} as follows -

P1 : x1 e2 x4 e3 x7 e5

P2 : e1 x2 e2 x5 e4 x8 e5

P3 : e1 x3 e3 x6 e4 x9

These three patterns for the modified graph are shown in the Figure

5. Note that every pattern takes pairs of d-adjacent deepest-edges

separated by some intervals xi, which we will henceforth refer to as the

connecting intervals.

5. Selecting a pattern: Evaluate the cost of patterns Pi by adding 1

for each deepest-edge used in the pattern and adding the number of

vertices in the each interval xj used in it. The patterns formed above

have a cost of 7, 4 and 5 respectively. In general, the total cost of the

patterns, C is -

C =
∑

xi + 2K

since each interval is used exactly once and each deepest-edge is used
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Figure 3.5: Patterns formed for the modified graph

twice. But ∑
xi = n− 2K

as vertices in the intervals and the end points of the deepest-edges add

up to the total number of vertices. Hence, the total cost of the patterns

= n. Hence, atleast one of the patterns must have a cost <= bn/3c.

In our example, this pattern is P2.

6. Forming the walk: To finally form the walk, we add the deepest-

edges in the pattern as it is. For every interval, edges equal to the

number of vertices in each interval are added to connect the vertices

to the deepest-edge connecting that interval in the pattern(can be any

one of the deepest-edges). Refer to Figure 6 for the two options. In



18 Tours using Hamiltonian paths

case an interval did not contain any vertices, no edge is added to it.

Figure 3.6: Connecting vertices in the intervals in 2 ways

Doing this gives us intervals which are basically Eulerian, except an

edge which makes the last vertex in the interval and another vertex

of the other deepest-edge as odd degree vertices. Removing this edge

from the interval between a d-adjacent pair of deepest-edges does not

disconnect the graph. But removing this edge from the connecting

interval between two d-adjacent pairs disconnects the graph, as shown

in Figure 8. Thus, we will remove the extra edges from the interval

enclosed in the d-adjacent pair, as shown in Figure 7, and use these

to double the edges in the connecting intervals to make the graph

Eulerian, as shown in Figure 9.

Now, every pattern has atleast bK/3c pairs of d-adjacent deep-edges.

One edge from each such pair can be removed without disturbing the

connectivity of the graph. Thus giving us atleast bK/3c extra edges.

Also, note that each vertex which was split in the earlier step had
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Figure 3.7: Intervals inside d-adjacent deepest-edges

Figure 3.8: Removing an edge from connecting intervals disconnects the
graph

Figure 3.9: Doubling an edge in the connecting interval
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to define the boundaries of a connecting interval(interval between a

pair of d-adjacent deepest-edges). Thus, combining these vertices back

does not disconnect the graph or increase the number of edges of used.

After combining back the split vertices if any, there are atmost dK/3e

connecting intervals. Hence, to make the graph Eulerian we will remove

atmost 2 more edges. Thus, we get a walk using not more than d4/3en

edges. Final walk for the example we were working on is shown in

Figure 10.

Figure 3.10: Final walk formed using P2



Chapter 4

Cubic 3-Edge-Connected

Graphs

We consider the special case of the problem when G is 3-regular (also called

cubic) and 3-edge-connected. Note that the smallest Eulerian subgraph

contains at least n = ‖V ‖ edges. In fact, in the shortest path metric arising

out of such a graph the Held-Karp bound for the length of the TSP tour

would also be n. This is because we can obtain a fractional solution to the

sub-tour elimination LP (which is equivalent to the Held-Karp bound) of

value n by assigning 2/3 to every edge in G.

Improving the approximation ratio for metric-TSP beyond 3/2 is a long

standing open problem. For the metric completion of cubic 3-edge connected

graphs Gamarnik et.al. [18] obtained an algorithm with an approximation

guarantee slightly better than 3/2. The main result of this paper is to

improve this approximation guarantee to 4/3 by giving a polynomial time
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algorithm to find a connected Eulerian subgraph with at most 4n/3 edges.

This matches the conjectured integrality gap for the sub-tour elimination

LP for the special case of these metrics.

Problem Statement: Given a cubic 3-edge-connected graph G, give a tour

that spans all vertices and uses atmost (4/3)n edges.

4.1 Preliminaries

Let NG(x) denote the neighbours of x and let dG(x) denote the degree of x.

Let E(v) be the set of edges incident on v. For a given subgraph H of G, we

can contract every edge in H to a vertex. The resulting graph is represented

as G/H, and the vertex in G/H corresponding to H is called a super vertex

represented as [H]. σ(X) is used to represent the minimum size of components

of X.

4.2 Important Lemmas

Lemma 1 [15]: Every bridgeless cubic graph has a 2-factor.

Lemma 2 [14]: Let G be a k-edge-connected graph, v ∈ V(G) with d(v)

≥ k+2. Then there exists edges e1,e2 ∈ E(G) such that Gve1,e2 is homeo-

morphic to a k-edge-connected graph.

Lemma 3 [13]: Let G be a 3-edge-connected graph with n vertices. Then G

has a spanning even subgraph in which each component has atleast min{5,n}

vertices.



4.3 Algorithm 23

4.3 Algorithm

Our algorithm can be broadly split into three parts. We first find a 2-factor

of the cubic graph that has no 3-cycles and 4-cycles. Next, we compress the

5-cycles into ‘super-vertices’and split them using Lemma 2 to get a cubic

3-edge-connected graph G0 again. Repeatedly applying the first part on

G0 and compressing the five cycles gives a 2-factor with no 5-cycle on the

vertices of the original graph. We ‘expand’back the super-vertices to form X

that is a subgraph of G. We finally argue that X can be modified to get a

connected spanning even multi-graph using at most 4/3(n) edges.

The starting point of our algorithm is Theorem 3 [13]. In fact [13] proves

the following stronger theorem.

Theorem: Let G be a 3-edge-connected graph with n vertices, u2 be a vertex

of G with d(u2) = 3, and e1 = (u1, u2), e2 = (u2, u3) be edges of G. (It may

be the case that u1 = u3). Then G has a spanning even subgraph X with

{e1, e2} ⊂ E(X) and σ(X) ≥ min(n,5).

The proof of this theorem is non-constructive. We refer to the edges e1, e2 in

the statement of the theorem as ‘required edges’. We now discuss the changes

required in the proof given in [13] to obtain a polynomial time algorithm

which gives the subgraph X with the properties as specified in the Theorem

above. Note that we will be working with a 3-regular graph (as against an

arbitrary graph of minimum degree 3 in [13]) and hence the even subgraph

X we obtain will be a 2-factor.

1. If G contains a non-essential 3-edge cut then we proceed as in the proof

of Claim 2 in [13]. This involves splitting G into 2 graphs G1,G2 and
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suitably defining the required edges for these 2 instances so that the

even subgraphs computed in these 2 graphs can be combined. This

step is to be performed whenever the graph under consideration has

an essential 3-edge cut.

2. Since G is 3-regular we do not require the argument of Claim 6.

3. Since G has no essential 3-edge cut and is 3-regular, a 3-cycle in G

implies that G is K4. In this case we can find a spanning even subgraph

containing any 2 required edges.

4. The process of eliminating 4-cycles in the graph involves a sequence

of graph transformations. The transformations are as specified in [13]

but the order in which the 4-cycles are considered depends on the

number of required edges in the cycle. We first consider all such cycles

which do not have any required edges, then cycles with 2 required

edges and finally cycles which have one required edge. Since with each

transformation the number of edges and vertices in the graph reduces

we would eventually terminate with a graph, say G0, with girth 5. We

find a 2-factor in G0, say X0 and undo the transformations (as specified

in [13]) in the reverse order in which they were done to obtain a 2-factor

X in the original graph G which has the properties of Theorem 1.

Suppose the 2-factor obtained X contains a 5-cycle C. We compress the

vertices of C into a single vertex, say vC , and remove self loops. vC has

degree 5 and we call this vertex a super-vertex. We now use Lemma 2 to
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replace two edges (x1, vC) and (x2, vC) incident at vC with the edge (x1, x2)

while preserving 3-edge connectivity. The edge (x1, x2) is called a super-edge.

Since the graph obtained is cubic and 3-edge connected we can once again

find a 2-factor, each of whose cycles has length at least 5. If there is a

5-cycle which does not contain any super-vertex or super-edge we compress

it and repeat the above process. We continue doing this till we obtain a

2-factor, say X, each of whose cycles is either of length at least 6 or contains

a super-vertex or a super-edge.

In the 2-factor X we replace every super-edge with the corresponding edges.

For instance the super-edge (x1, x2) would get replaced by edges (x1, vC) and

(x2, vC) where vC is a super-vertex obtained by collapsing the vertices of a

cycle C. After this process X is no more a 2-factor but an even subgraph.

However, the only vertices which have degree more than 2 are the super-

vertices and they can have a maximum degree 4.

Let X denote this even subgraph.

Consider some connected component W of X. We will show how to expand

the super-vertices in W into 5-cycles to form an Eulerian subgraph with at

most 4|W |/3 − 2 edges, where |W0| is number of vertices in the expanded

component. For each component we will use 2 more edges to connect this

component to the other components to obtain a connected Eulerian subgraph

with at most 4|W |/3 edges. Note that the subgraph we obtain may use

an edge of the original graph at most twice. We now consider two cases

depending on whether W contains a super-vertex.

Case i. W has no super-vertices. Then, W is essentially a cycle with atleast

6 vertices. W is already Eulerian and we can use b|W |/3c edges to connect
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Figure 4.1: On Expanding a super-vertex with degree 2

W to the rest of the graph by doubling an edge ∈ E(G) from a vertex in W

to G \W .

Case ii. W has atleast one super-vertex, say s. We will discuss the

transformations for a single super-vertex. For other super-vertices in the

component similar constructions can be done. Now, s can either have

degree = 2 or 4. If s has degree 2, then the 2 edges incident on the 5-cycle

corresponding to s would be as in Figure [??]. In both cases we obtain an

Eulerian subgraph. By this transformation we have added 4 vertices and at

most 5 edges to the subgraph W.

Suppose the super-vertex s has degree 4 in the component W. W may not

necessarily be a component of the subgraph X ′) as it might have been

obtained after expanding a few super-vertices, but that will not effect our

algorithm. Let C be the 5-cycle corresponding to this super-vertex and let
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Figure 4.2: On Expanding a super-vertex with degree 4

Figure 4.3: Expanding a super-vertex with degree 4
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Figure 4.4: When v1,v4 are in the same component

v1, v2, v3, v4, v5 be the vertices on C (in order). Further let vi′ be the vertex

not in C adjacent to vi. Let (v5, v5′) be the edge incident on C that is not in

the subgraph W.

We replace the vertex s in W with the cycle C and let W0 be the resulting

subgraph. Note that by dropping edges {v1, v2} and {v3, v4} from W0 we

obtain an Eulerian subgraph which includes all vertices of C. However, this

subgraph may not be connected as it could be the case that edges {v1, v2}

and {v3, v4} form an edge-cut in W0. If this is the case then we apply

the transformation as shown in Figure [??]. This ensures that W0 remains

connected and is Eulerian. Note that as a result of this step we have added

4 vertices and at most 4 edges to the subgraph W.

We will now prove that the number of edges used to expand W into an

Eulerian graph is no more than b(|W |/3)c − 2.



4.3 Algorithm 29

Analysis Let the component W have k1 super-vertices of degree 2, k2

super-vertices of degree 4 and k3 vertices of degree 2. This implies W has k1

+ 2k2 + k3 edges. On expanding a super-vertex of degree 2, we add 5 edges

in the worst case. On expanding a super-vertex of degree 4, we add 4 edges

in the worst case. So, the total number of edges is Ne= ≤ 6k1 + 6k2 + k3.

The total number of vertices in the expanded component is Nv = 5k1 + 5k2

+ k3. Now, Ne/Nv = 1 + k1+k2
5k1+5k2+k3

. Using the fact that k1 + k2 + k3 ≥ 5

and that k1 +k2 ≥ 1, we can show that the expanded component uses atmost

b4|W ′|/3c − 2 edges.
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Chapter 5

Future Work

In the previous chapters, two algorithms have been detailed - the path

algorithm and the cubic algorithm. The algorithm discussed in chapter 4 was

submitted to arXiv on 18th January 2011. Two recent unpublished results

give a 1.5 - ε approximation (Gharan et al [25]) and 1.461 approximation

(Svensson et al [23]) for graphical TSP. Another paper by Sylvia Boyd et al

[2] gives a 4/3 approximation for Cubic Graphs and 7/5 approximation for

Sub-Cubic Graphs.

It is tempting to extend the cubic algorithm for graphs with higher degree

vertices especially since the result in [13] holds for all 3-edge connected graphs.

The example of a K3,n demonstrates that this conjecture would be false. A

K3,n is 3-edge connected and any connected Eulerian subgraph contains at

least 2n edges.

The path algorithm and [23] have certain uncanny similarities. They both

partition the edges of the depth first tree, though the path algorithm has

more control over which edges are picked. Achieving a 4/3 algorithm requires
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a lot more control over the structure of matchings and extending the path

algorithm looks promising.

Lastly, there is still a lot of work to be done to associate the graph properties

with the held-karp bound. To achieve a 4/3-approximation, one might think

of using the vertices of the SubTour LP as a starting point. Consider the

case of cubic 3-edge-connected graphs. These graphs can be decomposed

into different sets of matchings and a cycle-cover. Raising each set of

matching to 1 and the cycle cover edges to 1/2 gives a feasible solution to

the SubTour LP. But it is still not clear how this might help. Exploiting or

studying graph properties might be an alternate route towards achieving a

4/3 approximation.



References

1. Francisco Barahona. Fractional packing of T-joins. SIAM Journal on

Discrete Mathematics, 17:661 (669), 2004.

2. Sylvia Boyd, Rene Sitters, Suzanne van der Ster, and Leen Stougie.

TSP on cubic and subcubic graphs. In Proc. of the 15th Conference on

Integer Programming and Combinatorial Optimization (IPCO 2011).

To appear.

3. Nicos Christodes. Worst-case analysis of a new heuristic for the trav-

elling salesman problem. Technical report 388, Graduate School of

Industrial administration, Carnegie-Mellon University, 1976.

4. Michael Held and Richard M. Karp. The traveling-salesman problem

and minimum spanning trees. Operations Research, 18:1138(1162),

1970.

5. David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. An

improved upper bound for the TSP in cubic 3-edge-connected graphs.

Operations Research Letters, 33(5):467 (474), 2005.



34 Future Work

6. S. Boyd and R. Carr, Finding low cost TSP and 2-matching solutions us-

ing certain half integer subtour vertices, Report TR-96-12, Department

of Computer Science, University of Ottawa, Ottawa, 1996.

7. Gyula Y. Katona, Toughness and Edge-Toughness, Discrete Mathe-

matics, 164, 187 (196), 1997.

8. D. Bauer, H.J. Broersma, H.J. Veldman, Not Every 2-tough graph is

hamiltonian, Discrete Applied Mathematics, 99, 317 (321), 2000.

9. Akash M. Kushal, Mohit Singh, Vineet goyal, An Approximation

Algorithm for 2-Edge-Connectivity Problem, Bachelors Thesis, Indian

Institute of Technology, 2003.

10. Tomas Kaiser, Disjoint T-paths in tough graphs, Journal of Graph

Theory, 57, 1097 (0118), 2008.

11. M. Grtschel, M.W. Padberg On the symmetric travelling salesman

problem Inequalities, Mathematical Programming (1979) 265-280.

12. G. Y. Katona, Properties of edge-tough graphs, Graphs and Combina-

torics. 15 (1999) 315325.

13. Jackson, B. and Yoshimoto, K., Spanning even subgraphs of 3-edge-

connected graphs . Journal of Graph Theory, 62: 3747, 2009.

14. W. Mader, A reduction method for edge-connectivity in graphs, Ann.

Discrete Math. 3(1978), 145-164.

15. J. Peterson, Die Theorie der regularen Graphen, Acta Math. 15 (1891)

193-220.



35

16. L. Lovász: On some connectivity properties of Eulerian graphs, Acta

Math. Hung. 28 (1976),129-138

17. Boyd, S., Elliott-Magwood, P. - Feasibility of the Held-Karp LP relax-

ation of the TSP, Technical Report TR-2007-07, SITE, University of

Ottawa, Ottawa, Canada, 2007.

18. D.B. Shmoys and D.P. Williamson, Analyzing the Held-Karp TSP

bound: A monotonicity property with application, Inf. Process. Lett.

35 281 (285), 1990.

19. M. Grtschel On the symmetric travelling salesman problem Solution of

a 120-city problem, Mathematical Programming Study 12, 61-77,1980.

20. M. Padberg, G. Rinaldi - Abranch-and-cutalgorithmfor the resolution

of large-scale symmetric traveling salesman problems. SIAM Review,

33(1):60100, 1991.

21. A. Asadpour, M.X.Goemans, Aleksander Madry, S. Oveis Gharan,Amin

Saberi - An O(log n/ log log n)-approximation Algorithm for the

Asymmetric Traveling Salesman Problem. Proceedings of the Twenty-

First Annual ACM-SIAM Symposium on Discrete Algorithms, 2010.

22. P. Berman, M. Karpinski - 8/7 Approximation Algorithm for (1,2)

TSP. Proceedings of the seventeenth annual ACM-SIAM symposium

on Discrete algorithm, 2006.



36 Future Work

23. T. Momke, Ola Svensson - Approximating Graphic TSP by Matchings,

2011 [arXiv].

24. M.X. Goemans, Worst-case Comparison of Valid Inequalities for the

TSP, Mathematical Programming, 69, 335-349, 1995.

25. Shayan Oveis Gharan, Amin Saberi and Mohit Singh - A Randomized

Rounding Approach to the Traveling Salesman Problem, Preprint,

December 2010, Updated April, 2011.

26. N. Aggarwal, Naveen Garg, Swati Gupta - A 4/3 Approximation of

TSP on cubic 3-edge-connected graphs, 2011 [arXiv].

27. Combinatorial Optimization. William J. Cook, William H. Cunning-

ham, William R. Pulleyblank, Alexander Schrijver.

28. Approximation Algorithms. Vazirani, Vijay V.

29. Alexander Shrijver, History of Combinatorial Optimization, 2003.


	List of Figures
	Introduction
	Literature Review
	Tours using Hamiltonian paths
	Definitions
	Algorithm

	Cubic 3-Edge-Connected Graphs
	Preliminaries
	Important Lemmas
	Algorithm

	Future Work

