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What is Bias/Fairnesse
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What Is Bias/Fairnesse

“Bias. When scientific or technological decisions are based
on a narrow set of systemic, structural or social concepts and
norms, the resulting technology can privilege certain groups

and harm others.” — Nature comment
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Rating systems may d

MACHINE BIAS

Facebook Lets Advertisers
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~ Exclude Users by Race

o Facebook’s system allows advertisers to exclude black,
Hispanic, and other “ethnic affinities” from seeing ads.
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What You Need To Know About Predictive
Policing

Key background reading before our discussion on predictive policing on Wednesday, February
24th.
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A Tale of Opacity, Choice, and Discrimination

Abstract: To partly address people’s concerns over web
tracking, Google has created the Ad Settings webpage
to provide information about and some choice over the
profiles Google creates on users. We present AdFisher,
an automated tool that explores how user behaviors,
Google's ads, and Ad Settings interact. AdFisher can
run browser-based experiments and analyze data using
machine learning and significance tests. Our tool uses a
rigorous experimental design and statistical analysis to

Amit Datta*, Michael Carl Tschantz, and Anupam Datta

Automated Experiments on Ad Privacy Settings

serious privacy concern. Colossal amounts of collected
data are used, sold, and resold for serving targeted
content, notably advertisements, on websites (e.g., [1]).
Many websites providing content, such as news, out-
source their advertising operations to large third-party
ad networks, such as Google's DoubleClick. These net-
works embed tracking code into webpages across many
sites providing the network with a more global view of
each user's behaviors.

Key background reading before our discussion on predictive policing on Wednesday, February

24th.

e
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Outline of the talk

BBias in the data, models and variables

B Fairness Metrics
M Statistical measures
B EFquity measures

HTrolley Problem of Choice
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Predictive Policing

“application of analytical techniques to identify likely targets for police intervention
and prevent crime or solve past crimes by making statistical predictions”
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FIGURE 1 (a) Number of drug arrests made by Oakland police department, 2010. (1) West Oakland,
(2) International Boulevard. (b) Estimated number of drug users, based on 2011 National Survey on

Drug Use and Health
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ML finds patterns in data
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ML finds paftterns in data
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PredPol: crime type, time, loc

[Kristian Lum, Williom Isaac, 2016]
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Not just about collection

We live in a biased society, so it's inevitable that data collected about that

society will be biased: inherent bias, test data, feedback, proxies..
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Not just about collection

We live in a biased society, so it's inevitable that data collected about that
society will be biased: inherent bias, test data, feedback, proxies..
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Not just about collection -

We live in a biased society, so it's inevitable that data collected about that
society will be biased: inherent bias, test data, feedback, proxies..

DE GRUYTER OPEN Proceedings on Privacy Enhancing Technologies 2014; 1 (11):1-21

Amit Datta*, Michael Carl Tschantz, and Anupam Datta

Automated Experiments on Ad Privacy Settings

A Tale of Opacity, Choice, and Discrimination

“We also found that setting the gender to female resulted in getting fewer
instances of an ad related to high paying jobs than setting it to male. *

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology



Not just about collection -

We live in a biased society, so it's inevitable that data collected about that
society will be biased: inherent bias, test data, feedback, proxies..
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We do not want such biases to propagate into systems that make
life-changing decisions.
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Outline of the talk

BBias in the data, models and variables

BFairness Metrics
M Statistical measures
B EFquity measures

HTrolley Problem of Choice
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Machine Learning Pipeline
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Classification 12

Hired for job or not, will re-offend or not (prison),
given a loan or not.
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Statistical Definitions of Fairness n

Hired for job or not, will re-offend or not (prison),
given a loan or not.
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Statistical Definitions of Fairness “

Hired for job or not, will re-offend or not (prison),
given a loan or not.

A
_ Machine Bias

A There's software used across the country to predict future criminals. And it's biased

|

!

| against blacks.
B

|

|

NO COMPAS Risk Score: ProPublica
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Statistical Definitions of Fairness 13

Hired for job or not, will re-offend or not (prison),
given a loan or not.

Prediction Fails Differently for Black Defendants
WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as
likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They
are much more likely than blacks to be labeled lower risk but go on to commit other crimes.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | ProPublica, May 2014



Statistical Definitions of Fairness n

Hired for job or not, will re-offend or not (prison),
given a loan or not.

YES
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Statistical Definitions of Fairness n

Hired for job or not, will re-offend or not (prison),
given a loan or not.
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Statistical Definitions of Fairness n

Hired for job or not, will re-offend or not (prison),
given a loan or not.

YES

AA,’

’ s it fair To achieve
highest accuracy
iNn classification?

Or is it fair to
balance false
positives across
the groupse

False negatives<¢
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Statistical Definitions of Fairness

Total
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Predicted

condition

Predicted positive
condition ' predicted
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negative

In fact,

True condition

Condition positive

True positive,
Power

False negative,
Type Il error

True positive rate (TPR), Recall,
Sensitivity, probability of detection

2 True positive

= ¥ Condition positive

False negative rate (FNR), Miss rate
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= ¥ Condition positive
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Type | error
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~ X Condition negative

Prevalence
_ 2 Condition positive

Accuracy (ACC) =
2 True positive + = True negative

~ 2 Total population

Positive predictive value (PPV),

Precision =

2 True positive
2 Predicted condition positive

False omission rate (FOR) =
2 False negative

2 Total population

False discovery rate (FDR) =

2 False positive
2 Predicted condition positive

Negative predictive value (NPV) =
2 True negative

2 Predicted condition negative

Positive likelihood ratio (LR+)

_TPR
= FPR

Negative likelihood ratio (LR-)

_ FNR
~ TNR

2 Predicted condition negative

Diagnostic

F4 score =
odds ratio 2
LR 1 1
(DOR) = L_Rt Recall * Precision

different stakeholders might have different points of view
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Equity Metrics of Fairness n

What about general decisions: how much loan to gives where to
place an emergency room? Where to schedule deliveriese
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Group A Group B

s it fair to minimize total distance travelled by any group?

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology



Equity Metrics of Fairness n

What about general decisions: how much loan to gives where to
place an emergency room? Where to schedule deliveriese
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Equity Metrics of Fairness n

What about general decisions: how much loan to gives where to
place an emergency room? Where to schedule deliveriese
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Equity Metrics of Fairness

What about general decisions: how much loan to gives where to
place an emergency room? Where to schedule deliveriese

o o

o

e To° )
o

s it fair to minimize average distance travelled by any
group (per person)e
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Equity Metrics of Fairness

What about general decisions: how much loan to gives where to
place an emergency room? Where to schedule deliveriese

| (I
T R M
@9 Group A Group B

® O Group by race? income?
insurance?

s it fair to minimize average distance travelled by any
group (per person)e
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Equity Metrics of Fairness

Table 3a
Framework for equity measures

Scaling Reference distribution
Peer Mean Attribute
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Outline of the talk

BBias in the data, models and variables

BFairness Metrics
B Statistical measures
B EFquity measures

HTrolley Problem of Choice
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Which fairness do we wante m
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At least 50 ways to be fair

This has 1o be a collective decision we need to consciously reach
at, after a deeper dive into the application.
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Which fairness do we wante
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Drug Use and Health

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | Sources: shutterstock, Lum & Isaac 2014



Which fairness do we wante

Race (Civil Rights Act of 1964), Color (Civil
Ri?h’rs Act of 1964), Religion (Civil Rights Act
of 1964), National Origin (Civil Rights Act of
1964), Citizenship (Immigration Reform and
Conftrol Act), Age (Age discrimination in
Employment Act of 1967), Pregnancy
(Pregnancy Discrimination Act), Familial
status ‘Civil Rights Act of 1968), Disability
status (Rehabilitation Act of 1973;
Americans with Disabilities Act of 1990),
Veteran Status (Vietham Era Veterans'
Readjustment Assistance Act of 1974;

Lawyer/Policy Uniformed Services Employment and

maker: Cannof use Reemployment Rights Act), Genetic
Information (Genetic Information

profecfgd classes Nondiscrimination Act)

for making

decisions. Disparate Treatment v/s Impact

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | Boracas and Hardt, 2017



Which fairness do we wante m

Race (Civil Riahts Act of 1944). Color (Civil
PROPUBLICA TOPICSY SERIESY NEWSAPPS GETINVOLVED IMPACT ABOUT

~

MACHINE BIAS

Facebook Lets Advertisers
Exclude Users by Race

Facebook’s system allows advertisers to exclude black,
Hispanic, and other “ethnic affinities” from seeing ads.

Lawyer/Policy
maker: Cannof use
protected classes
for making
decisions.

B ® ® K € 3B

Nondiscriminafion AcCT)

Disparate Treatment v/s Impact

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | Boracas and Hardt, 2017



Which fairness do we wante

Algorithm

designer: . .

awareness of Machlne Blas

prO TeCTed CICISSGS There's software used across the country to predict future criminals. And it's biased
can fix bias against blacks.

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | Corbett-Davies et al, 2017



Which fairness do we wante m

Statistician: cannot have equal false positive,
negative rates & calibration simultaneously

Prediction Fails Differently for Black Defendants
WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as
likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They
are much more likely than blacks to be labeled lower risk but go on to commit other crimes.

COMPAS Debate: Northpointe v/s ProPublica

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | Kleinberg et al 2017, Chouldechova 2017



Which fairness do we wante E

Optimizer. can af times have approximately fair
solutions for multiple metrics together
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This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Ongoing work with Jalan, Ranade, Yang, Zhuang, 2018



Which fairness do we wante

Economists,
Behavioral
scientists,
Humans-in the
loop, ..

This has 1o be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | hscmd.org/momcare-statistics/



Which fairness do we wante

This has to be a collective decision we need to consciously reach
at, after a deeper dive into the application.

Bias and Fairness in Al/ML models | Swati Gupta | Georgia Institute of Technology | hscmd.org/momcare-statistics/



Transparency,
Interpretability, 27
Summa 'y Gameability2 -

M Bjas in the data, models and variables
B Collection, Feedback, Proxies, Test Data, Representation..

B Fairness Metrics

B Statistical measures: accuracy, false positive rate, frue positive rate,
calibration, ...

B Equity measures: general decisions, average metric, total metric,
group choice, ...

HTrolley Problem of Choice: it's an inclusive story

Questions? , www.swatigupta.tech
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